

Fluorophore	Excitation Maximum (nm)	Emission Maximum (nm)	Photons/Emission Event	Photoactivation	Buffer(s)	Reference	Comments
	()	()					

Synthetic Dyes

488 nm Excitation

Vybrant Dye Cycle Violet	369 (B), ~488 (G)	437 (B), ~510 (G)	2409 (1)	UV-Violet (405 nm)	Glycerol/OS (1)	1-3	Binds dsDNA. Low cytotoxicity and cell permeable. Does not require photoactivation but can be applied.
DAPI	364 (B), ~488 (G)	454 (B), ~510 (G)		UV-Violet (405 nm)	Glycerol/OS (4)	4	DNA minor groove binder. Cell impermeant.
Hoescht 33342	350 (B), ~488 (G)	461 (B), ~510 (G)		UV-Violet (405 nm)	Glycerol/OS (4)	4	DNA minor groove binder. Cell permeant.
Hoescht 33258	355 (B), ~488 (G)	465 (B), ~510 (G)		UV-Violet (405 nm)	Glycerol/OS (4)	4	DNA minor groove binder. Cell permeant.
SYTO-13	488	509			50mM MEA/OS (5)	5	DNA minor groove binder. Cell permeant. Also binds RNA.
YOYO-1	489	509			50mM MEA/OS (7)	6, 7	DNA minor groove binder. Cell impermeant. Also binds RNA. Dimeric.
YO-PRO-1	491	509			50mM MEA/OS (7)	7	DNA minor groove binder. Cell impermeant. Also binds RNA. Monomeric.
Alexa Fluor 488	495	519	1193 (8)	UV-Violet (405 nm)	10mM MEA/OS (8) 100mM MEA/OS (9)	8, 9, 44	High performance 488nm-excitable dye for STORM
Atto 488	501	523	1341 (8)	UV-Violet (405 nm)	10mM MEA/OS (8)	8, 9	Highest performance 488nm-excitable dye for STORM
Oregon Green	501	526	900 (10, Live)	UV-Violet (405 nm)	Live-OS	10	Recommend for live cell only (cell permeable), better green dyes for fixed work. BODIPY derivative.
Picogreen	502	524	(Live)		Live-OS+AA (11)	11	Binds dsDNA. Cell impermeant
Atto 520	516	538	868 (8), 1000 (12)	UV-Violet (405 nm)	143mM BME/OS (8) 100mM MEA/OS (12)	8, 12	Recommend Atto 488 or Alexa Fluor 488 instead, if possible

532 nm Excitation

Alexa Fluor 532	532	552		 100mM MEA/OS	13	
Atto 532	532	552	ł	 100mM MEA/OS	9, 14	

Fluorophore	Excitation Maximum	Emission Maximum	Photons/Emission	Photoactivation	Buffer(s)	Reference	Comments
	(nm)	(nm)	Lvent				

561 nm Excitation

CF 543	541	560		UV-Violet (405 nm)	10mM MEA/OS (15)	15	Needs further testing
TAMRA/TMR (Tetramethyl Rhodamine)	546	575	4884 (8) 1100 (10, Live)		10mM MEA/OS (8) Live-OS (10)	8, 10, 16	TMR conjugates (TMR Star) often used for SNAP-tag labeling
Dil	551	569	720	UV-Violet (405 nm)	Live-OS	17	Live cell stain for plasma membranes
MitoTracker Orange	554	576		UV-Violet (405 nm)	Live-OS	17	
Alexa Fluor 555	555	580	2500 (2)	UV-Violet (405 nm)	Glycerol/OS (2)	1, 2, 44	A good red dye for STORM, also works well in thiol+oxygen scavenger buffer well (unpublished).
CF 555	555	565		UV-Violet (405 nm)	10mM MEA/OS (15)	15	Needs further testing
DY-547	557	574		UV-Violet (405 nm)	10mM MEA/OS (15)	15	Needs further testing
СуЗВ	559	570	1365 (8, MEA) 2057 (8, BME)	UV-Violet (405 nm)	10mM MEA/OS (8) 143mM BME/OS (8)	8, 15	Highest performing red dye for STORM.
CF 568	562	583		UV-Violet (405 nm)	10mM MEA/OS (15)	15	Very promising red alternative, but needs further testing.
FLIP-565	565	580		UV-Violet (405 nm)	Physiological Buffer or Culture Medium	18, 19	
LysoTracker Red	577	590	820	UV-Violet (405 nm)	Live-OS	17	Live cell stain for lysosomes. BODIPY derivative.
Alexa Fluor 568	578	603	2826 (8), 1700 (10, Live)	UV-Violet (405 nm)	10mM MEA/OS (8) Live-OS (10)	8, 10, 15	Good red dye for STORM
MitoTracker Red	578	599	790	UV-Violet (405 nm)	Live-OS	17	Specific for mitochondria, for live-cell imaging
ER-Tracker Red	587	615	820	UV-Violet (405 nm)	Live-OS	17	Specific for endoplasmic reticulum, for live-cell imaging

647 nm Excitation

DY-634	635	658			100-200mM MEA/OS (20)	20	Needs further testing.
MitoTracker Deep Red	644	665		UV-Violet (405 nm)	Live-OS	17	Specific for mitochondria, for live-cell imaging
DiD	644	665		UV-Violet (405 nm)	Live-OS	17	Specific for plasma membranes, for live-cell imaging
SiR	645	661	630		Physiological Buffer or Culture Medium	21	Silicon rhodamine, doesn't require reducing buffer.
HMSiR	645	661	2,600		Physiological Buffer or Culture Medium	22	Higher performance silicon rhodamine derivative, doesn't require reducing buffer.
Cy5	649	670	4254 (8, MEA), 5873 (8, BME)	UV-Violet (405 nm)	10mM MEA/OS (8) 143mM BME/OS (8)	8, 23, 24	One of the highest performing dyes for STORM
Alexa Fluor 647	650	665	3823 (8, MEA), 5202 (8, BME), 2400 (25), 18050 (26)	UV-Violet (405 nm)	10mM MEA/OS (8) 143mM BME/OS (8) TCEP (25) Vectashield (26)	8, 15, 24, 25, 26, 44	Currently regarded as best dye for STORM
CF 647	650	665			10mM MEA/OS (15)	15	

Fluorophore	Excitation Maximum (nm)	Emission Maximum (nm)	Photons/Emission Event	Photoactivation	Buffer(s)	Reference	Comments
DyLight 650	652	672			100-200mM MEA/OS (20)	20	
Atto 655	663	684	1105 (8), 1200 (10, Live)	UV-Violet (405 nm)	10mM MEA/OS (8) Live-OS (10) Culture Medium (26)	8, 10, 27, 28, 29	Oxazine dye, first demonstrated in live cells in conjunction with TMP tag
CF 660C	667	685			100-200mM MEA/OS (20)	20	
DY-678	674	694			10mM MEA/OS (15)	15	
Atto 680	680	700	1656 (8)	UV-Violet (405 nm)	10mM MEA/OS (8) Culture Medium (26)	8, 15, 27, 28, 29	Oxazine dye, similar to Atto 655
CF 680	681	698			10mM MEA/OS (15) 100-200mM MEA/OS (20)	15, 20	
Alexa Fluor 700	696	719			10mM MEA/OS (15) 100mM MEA/OS (29)	15, 30	
Atto 700	700	716			10mM MEA/OS (15)	15, 29	

750 nm Excitation

Су7	743	767	997	UV-Violet (405 nm)	143mM BME/OS (8)	8	
DiR	748	780		UV-Violet (405 nm)	Live-OS	17	
Alexa Fluor 750	749	775	703 (8), 2800 (25)	UV-Violet (405 nm)	143mM BME/OS (8) TCEP (25)	8, 25	Does not perform well without TCEP buffer system
DyLight 750	752	778	749	UV-Violet (405 nm)	143mM BME/OS (8)	8	

Fluorescent

Proteins

PA-FPs

PA-GFP	504	517	313 (32, Live)	UV-Violet (405 nm)	Physiological Buffer or Culture Medium	31, 32	Recommended only for certain live cell and multicolor experiments as performance for STORM is relatively low.
PA-TagRFP	562	595	906 (32, Live)	UV-Violet (405 nm)	Physiological Buffer or Culture Medium	32, 33	Recommend higher performing green-red PC-FPs except for certain multicolor experiments.
PA-mCherry1	570	596	706 (32, Live)	UV-Violet (405 nm)	Physiological Buffer or Culture Medium	32, 34	Recommend higher performing green-red PC-FPs except for certain multicolor experiments.
PAmKate	586	628		UV-Violet (405 nm) or Blue (445 nm)	Physiological Buffer or Culture Medium	35	Only viable far-red FP for STORM.

PS-FPs

Dronpa	503	518	262 (32, Live)	UV-Violet (405 nm)	Physiological Buffer or Culture Medium	31, 32	Reversibly switchable dark-green. We recommend PS- CFP2 instead for most SMLM applications.
mGeosM	503	514	248 (32, Live)	UV-Violet (405 nm)	Physiological Buffer or Culture Medium	32, 36	Better than Dronpa but higher duty cycle than PS- CFP2

Fluorophore	Excitation Maximum (nm)	Emission Maximum (nm)	Photons/Emission Event	Photoactivation	Buffer(s)	Reference	Comments
Dreiklang	515	529	700 (Live)	UV (365 nm) to activate and Violet (405 nm) to deactivate	Physiological Buffer or Culture Medium	37	Unique FP where 515 nm light elicits fluorescence, but can be activated or deactivated with two different wavebands.
mIrisFP	486 (G), 516 (R)	546 (G), 578 (R)		UV-Violet (405 nm) for dark-green and green-to-red. Blue (488 nm) for dark-red	Physiological Buffer or Culture Medium	38	Photoconvertable from green to red state, both green and red states reversibly photoswitchable to dark state. Demonstrated for combined SMLM+pulse chase experiments.
NijiFP	469 (G), 526 (R)	507 (G), 569 (R)		UV-Violet (405 nm) for dark-green and green-to-red. Blue (488 nm) for dark-red	Physiological Buffer or Culture Medium	39	Photoconvertable from green to red state, both green and red states reversibly photoswitchable to dark state.

PC-FPs							
	400 (C) 490 (C)	468 (C) 511 (C)	222 (22 Livo)	LIV Violet (405 pm)	Physiological Buffer or	22 40	PS-CFP2 is easily imaged without photo-activation
F3-CFF2	400 (C), 490 (G)	408 (C), 511 (G)	223 (32, Live)	0 V-VIOIEL (405 IIII)	Culture Medium	32,40	and is a great candidate for multicolor imaging.
			1200 (10 1 1 10)		Live-OS (10)		
tdEos	506 (G), 569 (R)	516 (G), 581 (R)	1200 (10, Live)	UV-Violet (405 nm)	Physiological Buffer or	10, 31, 32	Tandem dimer so possible artifacts. Highest photon
			774 (32)		Culture Medium		output in class.
m Faa 2		F10 (C) F84 (D)	1200 (10, Live)		Physiological Buffer or	10 22 41	Tends to dimerize, recommend mEos3.2 or mMaple3
meosz	506 (G), 573 (K)	519 (G), 584 (K)	745 (32)	0v-violet (405 nm)	Culture Medium	10, 32, 41	instead.
m[ac2.2	F07 (C) F72 (D)		800 (22 Live)		Physiological Buffer or	22.42	Along with mMaple3, considered best of the green-
meoss.z	507 (G), 572 (K)	510 (G), 580 (K)	809 (32, Live)	0V-Violet (405 nm)	Culture Medium	32, 42	red PC-FPs.
m Faa Ab			050	LIV Vielet (405 mm)	Physiological Buffer or	42	Osmium Tetroxide resistant, engineered for
meus40	505 (G), 509 (K)	510 (G), 561 (K)	650	0V-Violet (405 mm)	Culture Medium	45	correlative EM imaging
m Manla 2	480 (C) FCC (D)		(75 (22 Live)		Physiological Buffer or	22	Most recently introduced PC-FP for SMLM, very high
miviapies	489 (G), 500 (K)	505 (G), 585 (K)	675 (32, Live)	0V-Violet (405 nm)	Culture Medium	32	detectable FP: total FP ratio.
Dandra 2	400 (C) 552 (D)	F07 (C) F72 (D)	(9) (22 (ine)	UV-Violet (405 nm) or	Physiological Buffer or	22	Blue light activation and good performance makes
Dendraz	490 (G), 553 (R)	507 (G), 573 (R)	000 (32, LIVE)	Blue (488 nm)	Culture Medium	32	Dendra2 good candidate for live cell SMLM.

Imaging BuffersComponent 1Component 2Component 3Component 4Component 5	Total Volume
---	-----------------

Fixed Cell Imaging

MEA/OS (OS = GLOX or POC)	790 uL Buffer B 890 uL Buffer B 940 uL Buffer B 980 uL Buffer B	200 uL MEA Stock (200 mM) 100 uL MEA Stock (100mM) 50 uL MEA Stock (50 mM) 10 uL MEA Stock (10 mM)	10 uL GLOX Stock or POC Stock	-	-	1 mL
MEA/OS (OS = PCD)	790 uL Buffer C 890 uL Buffer C 940 uL Buffer C 980 uL Buffer C	200 uL MEA Stock (200 mM) 100 uL MEA Stock (100mM) 50 uL MEA Stock (50 mM) 10 uL MEA Stock (10 mM)	25 uL PCD Stock	-	-	1 mL
BME/OS (OS = GLOX or POC)	970 uL Buffer B 980 uL Buffer B 985 uL Buffer B 989 uL Buffer B	20 uL BME Stock (286 mM) 10 uL BME Stock (143 mM) 5 uL BME Stock (71.5 mM) 1 uL BME Stock (14.3 mM)	10 uL GLOX Stock or POC Stock	-	-	1 mL
BME/OS (OS = PCD)	920 uL Buffer C 930 uL Buffer C 935 uL Buffer C 939 uL Buffer C	20 uL BME Stock (286 mM) 10 uL BME Stock (143 mM) 5 uL BME Stock (71.5 mM) 1 uL BME Stock (14.3 mM)	25 uL PCD Stock	-	-	1 mL
TCEP	920 uL Buffer D	50 uL TCEP Stock (25 mM)	10 uL GLOX Stock	10 uL MV Stock (1 mM)	10 uL AA Stock (1 mM)	1 mL
Glycerol/OS (OS = GLOX or POC)	800 uL Buffer E	190 uL PBS	10 uL GLOX Stock	-	-	1 mL
OxEA	720 uL PBS (pH = 8- 8.5)	50 uL MEA Stock	30 uL OxyFluor™	200 uL Sodium DL-lactate	-	1 mL

Live Cell Imaging

Live-OS						
(OS = GLOX or POC)	990 uL Buffer F	10 uL GLOX Stock or POC Stock	OPTIONAL: 6 uL MEA stock (6 mM)	-	-	1 mL
Optional MEA						
Live-OS						
(OS = GLOX or POC)	990 uL Buffer F	10 uL GLOX Stock or POC Stock	OPTIONAL: 5 uL BME stock (71.5 mM)	-	-	1 mL
Optional BME						
Live-OS+AA						
(OS = GLOX or POC)	980 uL Buffer F	10 uL GLOX Stock or POC Stock	OPTIONAL: 5 uL BME stock (71.5 mM)	10 uL AA Stock (1 mM)	-	1 mL
Optional BME						

Dilution/Storage Buffers

Butter A	10 mM Tris (pH 8) + 50 mM NaCl	Room Temperature, long term	
			Recommend testing 10-200 mM Tris, higher pH may
Buffer B	50 mM Tris (pH 8) +10 mM NaCl + 10% glucose	Room Temperature or 4degC, long term	help due to OS-induced pH drop.
Buffer C	50 mM Tris (pH 8) +10 mM NaCl	Room Temperature or 4degC, long term	
Buffer D	200 mM Tris (pH 9) + 5% glucose	Room Temperature or 4degC, long term	
Buffer E	120 mg/mL Glucose in Glycerol	4degC	
			For live imaging, can substitute for other growth
Buffer F	L-15 Medium + 2-10% glucose	4degC, protected from light, ~1 month	medium + 75 mM HEPES. Use phenol red-free media.
Buffer G	100 mM Tris (pH 8) + 50mM KCl + 1mM EDTA + 50% glycerol	Room Temperature or 4degC, long term	For storage of PCD.

Reducing and Oxidizing Reagent Stock Solutions

MEA Stock (1 M Mercaptoethylamine)	77 mg MEA + 1.0 mL 0.25N HCl	4degC for ~2 weeks	100x Stock Solution
BME Stock (14.3 M Beta-			
mercaptoethanol)	Provided by supplier as ~14.3 M stock.	4degC, long term	100x Stock Solution
TCEP Stock (0.5 M tris(2-			
carboxyethyl)phosphine)	Provided by suppliers as 0.5 M ampoules.	4degC, use same day ampoule opened.	20x Stock Solution
MV Stock (0.1 M methyl viologen)	25.7 mg MV + 1.0 mL ddH2O	4degC for ~2 weeks	100x Stock Solution
AA Stock (0.1 M ascorbic acid)	17.6 mg AA + 1.0 mL ddH2O	4degC for ~1 month	100x Stock Solution
			Buffer additive for improved Alexa Fluor 647 photon
COT Stock (cyclooctatetraene)	20.8 mg COT + 1.0 mL DMSO	-20degC	statistics. 100x stock solution.

Oxygen-Scavenging System Stock Solutions

Glucose Stock	45% (w/v) solution		
Catalase Stock	17 mg/ml Catalase in dH20	AdegC for ~1 month	For use in GLOX and POC Stock solutions
			Thoroughly vortex contents and centrifuge at max
GLOX Stock	56 mg/mL Glucose Oxidase + 3.4 mg/mL Catalase Stock in Dilution Buffer A	4degC for ~2 weeks	speed, harvest supernatant for use.
			Thoroughly vortex contents and centrifuge at max
POC Stock	112 mg/mL Pyranose Oxidase + 3.4 mg/mL catalase in Dilution Buffer A	4degC for ~2 weeks	speed, harvest supernatant for use.
PCD Stock	1.4 mg/mL Protocatechuate 3,4-Dioxygenase in Dilution Buffer G	-20degC	
PCA Stock	15.4 mg/mL Protocatechuic Acid in ddH2O (adjust pH to 9.0 with 10 N NaOH)	4degC	
		, and the second s	
Sodium DL-lactate	60% (w/w) solution	4degC	
			Do not agitate vigorously or exceed warming
OxyFluor™	Unknown	-20degC	temperature of 37degC

References

- 1. D. Żurek-Biesiada et al., Localization microscopy of DNA in situ using Vybrant(*) DyeCycle[™] Violet fluorescent probe: A new approach to study nuclear nanostructure at single molecule resolution. Exp Cell Res 343, 97-106 (2016).
- 2. K. Prakash et al., Superresolution imaging reveals structurally distinct periodic patterns of chromatin along pachytene chromosomes. Proc Natl Acad Sci U S A 112, 14635-14640 (2015).
- 3. D. Żurek-Biesiada et al., Quantitative super-resolution localization microscopy of DNA in situ using Vybrant® DyeCycle™ Violet fluorescent probe. Data Brief 7, 157-171 (2016).
- 4. A. T. Szczurek et al., Single molecule localization microscopy of the distribution of chromatin using Hoechst and DAPI fluorescent probes. Nucleus 5, 331-340 (2014).
- 5. C. Flors, DNA and chromatin imaging with super-resolution fluorescence microscopy based on single-molecule localization. Biopolymers 95, 290-297 (2011).
- 6. C. Flors, C. N. Ravarani, D. T. Dryden, Super-resolution imaging of DNA labelled with intercalating dyes. Chemphyschem 10, 2201-2204 (2009).
- 7. C. Flors, Photoswitching of monomeric and dimeric DNA-intercalating cyanine dyes for super-resolution microscopy applications. Photochem Photobiol Sci 9, 643-648 (2010).
- 8. G. T. Dempsey, J. C. Vaughan, K. H. Chen, M. Bates, X. Zhuang, Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat Methods 8, 1027-1036 (2011).
- 9. S. van de Linde et al., Photoinduced formation of reversible dye radicals and their impact on super-resolution imaging. Photochem Photobiol Sci 10, 499-506 (2011).
- 10. S. A. Jones, S. H. Shim, J. He, X. Zhuang, Fast, three-dimensional super-resolution imaging of live cells. Nat Methods 8, 499-508 (2011).
- 11. A. Benke, S. Manley, Live-cell dSTORM of cellular DNA based on direct DNA labeling. Chembiochem 13, 298-301 (2012).
- 12. A. Löschberger et al., Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution. J Cell Sci 125, 570-575 (2012).
- 13. M. Heilemann, S. van de Linde, A. Mukherjee, M. Sauer, Super-resolution imaging with small organic fluorophores. Angew Chem Int Ed Engl 48, 6903-6908 (2009).
- 14. J. Fölling et al., Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nat Methods 5, 943-945 (2008).
- 15. M. Lehmann, G. Lichtner, H. Klenz, J. Schmoranzer, Novel organic dyes for multicolor localization-based super-resolution microscopy. J Biophotonics 9, 161-170 (2016).
- 16. T. Klein et al., Live-cell dSTORM with SNAP-tag fusion proteins. Nat Methods 8, 7-9 (2011).
- 17. S. H. Shim et al., Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes. Proc Natl Acad Sci U S A 109, 13978-13983 (2012).
- 18. V. N. Belov, M. L. Bossi, J. Fölling, V. P. Boyarskiy, S. W. Hell, Rhodamine spiroamides for multicolor single-molecule switching fluorescent nanoscopy. Chemistry 15, 10762-10776 (2009).
- 19. R. Galland et al., 3D high- and super-resolution imaging using single-objective SPIM. Nat Methods 12, 641-644 (2015).
- 20. Z. Zhang, S. J. Kenny, M. Hauser, W. Li, K. Xu, Ultrahigh-throughput single-molecule spectroscopy and spectrally resolved super-resolution microscopy. Nat Methods 12, 935-938 (2015).
- 21. G. Lukinavi_ius et al., A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. Nat Chem 5, 132-139 (2013).
- 22. S. N. Uno et al., A spontaneously blinking fluorophore based on intramolecular spirocyclization for live-cell super-resolution imaging. Nat Chem 6, 681-689 (2014).
- 23. M. J. Rust, M. Bates, X. Zhuang, Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3, 793-795 (2006).
- 24. M. Bates, B. Huang, G. T. Dempsey, X. Zhuang, Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317, 1749-1753 (2007).
- 25. J. C. Vaughan, G. T. Dempsey, E. Sun, X. Zhuang, Phosphine quenching of cyanine dyes as a versatile tool for fluorescence microscopy. J Am Chem Soc 135, 1197-1200 (2013).
- 26. N. Olivier, D. Keller, V. S. Rajan, P. Gönczy, S. Manley, Simple buffers for 3D STORM microscopy. Biomed Opt Express 4, 885-899 (2013).
- 27. R. Wombacher et al., Live-cell super-resolution imaging with trimethoprim conjugates. Nat Methods 7, 717-719 (2010).
- 28. S. van de Linde, R. Kasper, M. Heilemann, M. Sauer. (Appl Phys B, 2008), vol. 93, pp. 725-731.
- 29. J. Vogelsang, T. Cordes, C. Forthmann, C. Steinhauer, P. Tinnefeld, Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy. Proc Natl Acad Sci U S A 106, 8107-8112 (2009).
- 30. A. Lampe, V. Haucke, S. J. Sigrist, M. Heilemann, J. Schmoranzer, Multi-colour direct STORM with red emitting carbocyanines. Biol Cell 104, 229-237 (2012).
- 31. E. Betzig et al., Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642-1645 (2006).
- 32. S. Wang, J. R. Moffitt, G. T. Dempsey, X. S. Xie, X. Zhuang, Characterization and development of photoactivatable fluorescent proteins for single-molecule-based superresolution imaging. Proc Natl Acad Sci U S A 111, 8452-8457 (2014).
- 33. F. V. Subach, G. H. Patterson, M. Renz, J. Lippincott-Schwartz, V. V. Verkhusha, Bright monomeric photoactivatable red fluorescent protein for two-color super-resolution sptPALM of live cells. J Am Chem Soc 132, 6481-6491 (2010).
- 34. F. V. Subach et al., Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. Nat Methods 6, 153-159 (2009).
- 35. M. S. Gunewardene et al., Superresolution imaging of multiple fluorescent proteins with highly overlapping emission spectra in living cells. Biophys J 101, 1522-1528 (2011).
- 36. H. Chang et al., A unique series of reversibly switchable fluorescent proteins with beneficial properties for various applications. Proc Natl Acad Sci U S A 109, 4455-4460 (2012).
- 37. T. Brakemann et al., A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching. Nat Biotechnol 29, 942-947 (2011).
- 38. J. Fuchs et al., A photoactivatable marker protein for pulse-chase imaging with superresolution. Nat Methods 7, 627-630 (2010).
- 39. V. Adam et al., Rational design of photoconvertible and biphotochromic fluorescent proteins for advanced microscopy applications. Chem Biol 18, 1241-1251 (2011).
- 40. H. Shroff et al., Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc Natl Acad Sci U S A 104, 20308-20313 (2007).
- 41. S. A. McKinney, C. S. Murphy, K. L. Hazelwood, M. W. Davidson, L. L. Looger, A bright and photostable photoconvertible fluorescent protein. Nat Methods 6, 131-133 (2009).
- 42. M. Zhang et al., Rational design of true monomeric and bright photoactivatable fluorescent proteins. Nat Methods 9, 727-729 (2012).
- 43. M. G. Paez-Segala et al., Fixation-resistant photoactivatable fluorescent proteins for CLEM. Nat Methods 12, 215-218, 214 p following 218 (2015).
- 44. L. Nahidiazar et al., Optimizing Imaging Conditions for Demanding Multi-Color Super Resolution Localization Microscopy. PLoS ONE 11: e0158884. doi:10.1371/journal.pone.0158884 (2016).