4Pi Superresolution Microscopy Literature References
Taking advantage of dual juxtaposed objectives, 4Pi microscopy is able to converge the excitation illumination at a common focal plane to generate constructive interference that reduces the axial resolution to a value near 100 nanometers. The resulting point-spread function is approximately 1.5-fold sharper in the lateral dimensions and nearly 7-fold sharper in the axial dimension compared to laser scanning confocal microscopy. 4Pi microscopy involves scanning the specimen pixel-by-pixel, similar to confocal, but can also be implemented with multi-photon laser sources and CCD camera systems.
Recommended Literature
- Bahlmann, K., Jakobs, S. and Hell, S. W. 4Pi-confocal microscopy of live cells.Ultramicroscopy 87: 155-164 (2001).
- Bewersdorf, J., Schmidt, R. and Hell, S. W. Comparison of I5M and 4Pi-microscopy. Journal of Microscopy 222: 105-117 (2006).
- Egner, A. and Hell, S. W. Fluorescence microscopy with super-resolved optical sections.Trends in Cell Biology 15: 207-215 (2005).
- Egner, A., Jakobs, S. and Hell, S. W. Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast. Proceedings of the National Academy of Sciences (USA) 99: 3370-3375 (2002).
- Egner, A., Verrier, S., Goroshkov, A., Soling, H. D. and Hell, S. W. 4Pi-microscopy of the Golgi apparatus in live mammalian cells. Journal of Structural Biology 147: 70-76 (2004).
- Gugel, H., Bewersdorf, J., Jakobs, S., Engelhardt, J., Storz, R. and Hell, S. W. Cooperative 4Pi excitation and detection yields sevenfold sharper optical sections in live-cell microscopy.Biophysical Journal 87: 4146-4152 (2004).
- Hell, S. W., Lindek, S. and Stelzer, E. H. K. Enhancing the axial resolution in far-field light microscopy: two-photon 4Pi confocal fluorescence microscopy. Journal of Modern Optics41: 675-681 (1994).
- Hell, S. W. and Nagorni, M. 4Pi confocal microscopy with alternate interference. Optics Letters 23: 1567-1569 (1998).
- Hell, S. W., Schmidt, R. and Egner, A. Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses. Nature Photonics 3: 381-387 (2009).
- Hell, S. W., Schrader, M. and Van Der Voort, H. T. M. Far-field fluorescence microscopy with three-dimensional resolution in the 100-nm range. Journal of Microscopy 187: 1-7 (1997).
- Hell, S. W. and Stelzer, E. H. K. Properties of a 4Pi confocal fluorescence microscope.Journal of the Optometric Society of America A 9: 2159-2166 (1992).
- Hell, S. W. and Stelzer, E. H. K. Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation. Optics Communications 93: 277-282 (1992).
- Lang, M. C., Staudt, T., Engelhardt, J. and Hell, S. W. 4Pi microscopy with negligible sidelobes. New Journal of Physics 10: 043041-13 (2008).
- Schrader, M. and Hell, S. W. 4Pi-confocal images with axial superresolution. Journal of Microscopy 183: 110-115 (1996).
- Schrader, M., Hell, S. W. and van der Vorrt, H. T. M. Three-dimensional super-resolution with a 4pi-confocal microscope using image restoration. Journal of Applied Physics 84: 4033-4042 (1998).
Additional Literature Sources
- Arkhipov, A. and Schulten, K. Limits for reduction of effective focal volume in multiple-beam light microscopy. Optics Express 17: 2861-2870 (2009).
- Arkhipov, A., Huve, J. H., Kahms, M., Peters, R. and Schulten, K. Continuous fluorescence microphotolysis and correlation spectroscopy using 4Pi microscopy. Biophysical Journal93: 4006-4017 (2007).
- Bahlmann, K. and Hell, S. W. Polarization effects in 4Pi confocal microscopy studied with water-immersion lenses. Applied Optics 39: 1652-1658 (2000).
- Bewersdorf, J., Bennett, B. T. and Knight, K. L. H2AX chromatin structures and their response to DNA damage revealed by 4Pi microscopy. Proceedings of the National Academy of Sciences (USA) 103: 18137-18142 (2006).
- Egner, A., Schrader, M. and Hell, S. W. Refractive index mismatch induced intensity and phase variations in fluorescence confocal, multiphoton and 4Pi-microscopy. Optics Communications 153: 211-217 (1998).
- Glaschick, S., Rocker, C., Deuschle, K., Wiedenmann, J., Oswald, F., Mailander, V. and Nienhaus, G. U. Axial resolution enhancement by 4Pi confocal fluorescence microscopy with two-photon excitation. Journal of Biological Physics 33: 433-443 (2007).
- Haeberle, O., Xu, C., Dieterlen, A. and Jacquey, S. Multiple-objective microscopy with three-dimensional resolution near 100 nm and a long working distance. Optics Letters 26: 1684-1686 (2001).
- Hanninen, P. E., Hell, S. W., Salo, J. and Soini, E. Two-photon excitation 4Pi confocal microscope: Enhanced axial resolution microscope for biological research. Applied Physics Letters 66: 1698-1700 (1995).
- Hell, S. W., Lindek, S., Cremer, C. and Stelzer, E. H. K. Measurement of the 4Pi-confocal point spread function proves 75 nm axial resolution. Applied Physics Letters 64: 1335-1337 (1994).
- Hell, S. W., Soukka, J. and Hanninen, P. E. Two- and multiphoton detection as an imaging mode and means of increasing the resolution in far-field light microscopy: A study based on photon-optics. Bioimaging 3: 64-69 (1995).
- Hell, S. W., Stelzer, E. H. K., Lindek, S. and Cremer, C. Confocal microscopy with an increased detection aperture: Type-B 4Pi confocal microscopy. Optics Letters 19: 222-224 (1994).
- Huve, J., Wesselmann, R., Kahms, M. and Peters, R. 4Pi microscopy of the nuclear pore complex. Biophysical Journal 95: 877-885 (2008).
- Ivanchenko, S., Glaschick, S., Rocker, C., Oswald, F., Wiedenmann, J. and Nienhaus, G. Two-photon excitation and photoconversion of EosFP in dual-color 4Pi confocal microscopy.Biophysical Journal 92: 4451-4457 (2007).
- Kano, H., Jakobs, S., Nagorni, M. and Hell, S. W. Dual-color 4Pi-confocal microscopy with 3D-resolution in the 100 nm range. Ultramicroscopy 90: 207-213 (2002).
- Lang, M., Jegou, T., Chung, I., Richter, K., Munch, S., Udvarhelyi, A., Cremer, C., Hemmerich, P., Engelhardt, J., Hell, S. W. and Rippe, K. Three-dimensional organization of promyelocytic leukemia nuclear bodies. Journal of Cell Science 123: 392-400 (2010).
- Lang, M. C., Engelhardt, J. and Hell, S. W. 4Pi microscopy with linear fluorescence excitation. Optics Letters 32: 259-261 (2007).
- Lang, M. C., Muller, T., Engelhardt, J. and Hell, S. W. 4Pi microscopy of type A with 1-photon excitation in biological fluorescence imaging. Optics Express 15: 2459-2467 (2007).
- Mar Blanca, C. M. and Hell, S. W. Sharp spherical focal spot by dark ring 4pi-confocal microscopy. Single Molecules 2: 207-210 (2001).
- Nagorni, M. and Hell, S. W. 4Pi-confocal microscopy provides three-dimensional images of the microtubule network with 100- to 150-nm resolution. Journal of Structural Biology 123:236-247 (1998).
- Nagorni, M. and Hell, S. W. Coherent use of opposing lenses for axial resolution increase. II. Power and limitation of nonlinear image restoration. Journal of the Optical Society of America A 18: 49-54 (2001).
- Perinetti, G., Muller, T., Spaar, A., Polishchuk, R., Luini, A. and Egner, A. Correlation of 4Pi and electron microscopy to study transport through single Golgi stacks in living cells with super resolution. Traffic 10: 379-391 (2009).
- Plecita-Hlavata, L., Lessard, M., Santorova, J., Bewersdorf, J. and Jezek, P. Mitochondrial oxidative phosphorylation and energetic status are reflected by morphology of mitochondrial network in INS-1E and HEP-G2 cells viewed by 4Pi microscopy. Biochimica et Biophysica Acta - Bioenergetics 1777: 834-846 (2008).
- Schrader, M., Bahlmann, K., Giese, G. and Hell, S. W. 4Pi-confocal imaging in fixed biological specimens. Biophysical Journal 75: 1659-1668 (1998).
- Schrader, M., Kozubek, M. Hell, S. W. and Wilson, T. Optical transfer functions of 4Pi confocal microscopes: Theory and experiment. Optics Letters 22: 436-438 (1997).
- Vicidomini, G., Hell, S. W. and Schonle, A. Automatic deconvolution of 4Pi-microscopy data with arbitrary phase. Optics Letters 34: 3583-3585 (2009).
- Vicidomini, G., Schmidt, R., Egner, A., Hell, S. W. and Schonle, A. Automatic deconvolution of 4Pi-microscopy with variable phase. Optics Express 18: 10154-10167 (2010).
- von Middendorff, C., Egner, A., Geisler, C., Hell, S. W. and Schonle, A. Isotropic 3D nanoscopy based on single emitter switching. Optics Express 16: 20774-20788 (2008)