Phototoxicity in Microscopy Literature References
Phototoxicity often occurs upon repeated exposure of fluorescently labeled cells to illumination from lasers and high-intensity arc-discharge lamps. In their excited state, fluorescent molecules tend to react with molecular oxygen to produce free radicals that can damage subcellular components and compromise the entire cell. In addition, several reports have suggested that particular constituents of standard culture media, including the vitamin riboflavin and the amino acid tryptophan, may also contribute to adverse light-induced effects on cultured cells. Fluorescent proteins, due to the fact that their fluorophores are buried deep within a protective polypeptide envelope, are generally not phototoxic to cells. However, many of the synthetic fluorophores, such as the MitoTracker and nuclear stains (Hoechst, SYTO cyanine dyes, and DRAQ5), can be highly toxic to cells when illuminated for even relatively short periods of time. In designing experiments, fluorophores that exhibit the longest excitation wavelengths possible should be chosen in order to minimize damage to cells by short wavelength illumination.
Recommended Literature
- Dixit, R. and Richard, C. Cell damage and reactive oxygen species production induced by fluorescence microscopy: effect on mitosis and guidelines for non-invasive fluorescence microscopy. The Plant Journal 36: 280-290 (2003).
- Dobrucki, J. W., Feret, D. and Noatynska, A. Scattering of exciting light by live cells in fluorescence confocal imaging: Phototoxic effects and relevance for FRAP studies.Biophysical Journal 93: 1778-1786 (2007).
- Grzelak, A., ej Rychlik, B. and Bartosz, G. Light-dependent generation of reactive oxygen species in cell culture media. Free Radical Biology and Medicine 30: 1418-1425 (2001).
- Hoebe, R. A., Van Oven, C. H., Gadella Jr., T. W. J., Dhonukshe, P. B., Van Noorden, C. J. F. and Manders, E. M. M. Controlled light exposure microscopy (CLEM). Imaging and Microscopy9: 32-34 (2007).
- Davies, M. J. reactive species formed on proteins exposed to singlet oxygen.Photochemical and Photobiological Sciences 3: 17-25 (2004).
- Duffy, P. A. Cell culture phototoxicity test. Methods in Molecular Biology 43: 219-226 (1995).
- Godley, B. F., Shamsi, F. A., Liang, F. Q., Jarrett, S. G., Davies, S. and Boulton, M. Blue light induces mitochondrial DNA damage and free radical production in epithelial cells. Journal of Biological Chemistry 280: 21061-21066 (2005).
- Lasarow, R. M., Isseroff, R. R. and Gomez, E. C. Quantitative in vitro assessment of phototoxicity by a fibroblast-neutral red assay. Journal of Investigative Dermatology 98:725-729 (1992).
- Nishigaki, T., Wood, C. D., Shiba, K., Baba, S. A. and Darszon, A. Stroboscopic illumination using light-emitting diodes reduces phototoxicity in fluorescence cell imaging.BioTechniques 41: 191-197 (2006).
- Pattison, D. I. and Davies, M. J. Actions of ultraviolet light on cellular structures. Cancer: Cell Structures, Carcinogens and Genomic Instability 96: 131-157 (2006).
- Pletnev, S., Gurskaya, N. G., Pletneva, N. V., Lukyanov, K. A., Chudakov, D. M., Martynov, V. I., Popov, V. O., Kovalchuk, M. V., Wlodawer, A., Dauter, Z. and Pletnev, V. Structural basis for phototoxicity of the genetically encoded photosensitizer KillerRed. Journal of Biological Chemistry 284: 32028-32039 (2009).
Additional Literature Sources
- Akguen, N., Sailer, R., Kunzi-Rapp, K., Schneckenburger, H., Beck, G. C. and Rueck, A. C. Phototoxicity, dark-toxicity, and uptake-kinetics of natural hydrophilic and hydrophobic porphyrins in endothelial cells. Proceedings of SPIE 2625: 488 (1996).
- Atlante, A., Calissano, P., Bobba, A., Azzariti, A., Marra, E. and Passarella, S. Cytochrome C is released from mitochondria in a reactive oxygen species (ROS)- dependent fashion and can operate as a ROS scavenger and as a respiratory substrate in cerebellar neurons undergoing excitotoxic death. Journal of Biological Chemistry 275: 37159-37166 (2000).
- Aveline, B. M. and Redmond, R. W. Exclusive free radical mechanisms of cellular photosensitization. Photochemistry and Photobiology 68: 266-275 (2008).
- Aveline, B. M., Sattler, R. M. and Redmond, R. W. Environmental effects on cellular photosensitization: Correlation of phototoxicity mechanism with transient absorption spectroscopy measurements. Photochemistry and Photobiology 68: 51-62 (2008).
- Bilski, P., Hideg, K., Kalai, T., Bilska, M. A. and Chignell, C. F. Interaction of singlet molecular oxygen with double fluorescent and spin sensors. Free Radical Biology and Medicine 34:489-495 (2003).
- Bourdon, O., Mosqueira, V., Legrand, P. and Blais, J. A comparative study of the cellular uptake, localization and phototoxicity of meta-tetra(hydroxyphenyl) chlorin encapsulated in surface-modified submicronic oil/water carriers in HT29 tumor cells. Journal of Photochemistry and Photobiology B: Biology 55: 164-171 (2000).
- Breitenbach, T., Kuimova, M. K., Gbur, P., Hatz, S., Schack, N. B., Pederson, B., Lambert, J. D. C., Poulsen, L. and Ogilby, P. R. Photosensitized production of singlet oxygen: spatially-resolved optical studies in single cells. Photochemical and Photobiological Sciences 8:442 (2009).
- Bunting, J. R. A test of the singlet oxygen mechanism of cationic dye photosensitization of mitochondrial damage. Photochemistry and Photobiology 55: 81-87 (2008).
- Calvo, N. G., Gentili, C. R. and de Boland, A. R. The early phase of programmed cell death in Caco-2 intestinal cells exposed to PTH. Journal of Cellular Biochemistry 105: 989-997 (2008).
- Cash, T. P., Pan, Y. and Simon, C. Reactive oxygen species and cellular oxygen sensing.Free Radical Biology and Medicine 43: 1219-1225 (2007).
- Chin, W. W. L., Lau, W. K. O., Heng, P. W. S., Bhuvaneswari, R. and Olivo, M. Fluorescence imaging and phototoxicity effects of new formulation of chlorine e6-polyvinylpyrrolidone.Journal of Photochemistry and Photobiology B: Biology 84: 103-110 (2006).
- Cooper, D. R., Dimitrijevic, N. M. and Nadeau, J. L. Photosensitization of CdSe/ZnS QDs and reliability of assays for reactive oxygen species production. Nanoscale 2: 1 (2010).
- Davids, L. M., Kleemann, B., Kacerovska, D., Pizinger, K. and Kidson, S. H. Hypericin phototoxicity induces different modes of cell death in melanoma and human skin cells.Journal of Photochemistry and Photobiology B: Biology 91: 67-76 (2008).
- Dobrucki, J. W. Interaction of the oxygen-sensitive luminescent probes Ru(phen)32+ and Ru(bipy)32+ with animal and plant cells in vitro: Mechanism of phototoxicity and conditions for non-invasive oxygen measurements. Journal of Photochemistry and Photobiology B: Biology 65: 136-144 (2001).
- Donnert, G., Eggeling, C. and Hell, S. W. Triplet-relaxation microscopy with bunched pulsed excitation. Photochemical and Photobiological Science 8: 481 (2009).
- Foote, C. S. Mechanisms of photosensitized oxidation. Science 1968: 963-970 (1968).
- Freeman, R. G., Murtishaw, W. and Knox, J. M. Tissue culture techniques in the study of cell photobiology and phototoxicity. Journal of Investigative Dermatology 54: 164-169 (1970).
- Furiga, A., Olivier, D., Baud'huin, M., Bourre, L., Bugaj, A. and Patrice MD, PhD, T. The influence storage conditions on delta amino levulinic acid induced toxicity and phototoxicity in vitro. Photodiagnosis and Photodynamic Therapy 3: 35-45 (2006).
- Galkin, A., Abramov, A. Y., Frakick, N., Duchen, M. R. and Moncada, S. Lack of oxygen deactivates mitochondrial complex I: Implications for ischemic injury. Journal of Biological Chemistry 284: 36055-36061 (2009).
- Gerlich, D., Beaudouin, J., Gebhard, M., Ellenberg, J. and Eils, R. Four-dimensional imaging and quantitative reconstruction to analyse complex spatiotemporal processes in live cells. Nature Cell Biology 3: 852-855 (2001).
- Gomes, A. J., Barbough, P. A., Espreafico, E. M. and Tfouni, E. trans-[Ru(NO)(NH3)4(py)](BF4)3-H2O encapsulated in PLGA microparticles for delivery of nitric oxide to B16-F10 cells: Cytotoxicity and phototoxicity. Journal of Inorganic Biochemistry 102: 757-766 (2008).
- Gubory, K. H. A. Fibered confocal fluorescence microscopy for imaging apoptotic DNA fragmentation at the single-cell level in vivo. Experimental Cell Research 310: 474-481 (2005).
- Hoebe, R. A., Van Der Voort, H. T. M., Stap, J., Van Noorden, C. J. F. and Manders, E. M. M. Quantitative determination of the reduction of phototoxicity and photobleaching by controlled light exposure microscopy. Journal of Microscopy 231: 9-20 (2008).
- Hussain, S., Harris, F. and Phoenix, D. A. The phototoxicity of phenothiazinium-based photosensitizers to bacterial membranes. FEMS Immunology and Medical Microbiology46: 124-130 (2005).
- Jacobson, K., Hou, Y. and Wojcieszyn, J., Evidence for lack of damage during photobleaching measurements of the lateral mobility of cell surface components.Experimental Cell Research 116: 179-189 (1978).
- Janczyk, A., Wolnicka-Gubisz, A., Urbanska, K., Kisch, H., Stochel, G. and Macyk, W. Photodynamic activity of platinum(IV) chloride surface-modified TiO2 irradiated with visible light. Free Radical Biology and Medicine 44: 1120-1130 (2008).
- Jezek, P. and Hlavata, L. Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organisms. International Journal of Biochemistry and Cell Biology 37: 2478-2503 (2005).
- Jimenez-Banzo, A., Nonell, S., Hofkens, J. and Flors, C. Singlet oxygen photosensitization by EGFP and its chromophore HBDI. Biophysical Journal 94: 168-172 (2008).
- Jou, M. J., Jou, S. B., Chen, H. M., Lin, C. H. and Peng, T. I. Critical role of mitochondrial reactive oxygen species formation in visible laser irradiation: Induced apoptosis in rat brain astrocytes (RBA- 1). Journal of Biomedical Science 9: 507-516 (2002).
- Kandela, I. K., Bartlett, J. A. and Indig, G. L. Effect of molecular structure on the selective phototoxicity of triarylmethane dyes towards tumor cells. Photochemical and Photobiological Sciences 1: 309-314 (2002).
- Kassab, K. Photophysical and photosensitizing properties of selected cyanines. Journal of Photochemistry and Photobiology B: Biology 68: 15-22 (2002).
- Kessel, D. and Luo, Y. Mitochondrial photodamage and PDT-induces apoptosis. Journal of Photochemistry and Photobiology B: Biology 42: 89-95 (1998).
- Kolega, J. Phototoxicity and photoinactivation of blebbistatin in UV and visible light.Biochemical and Biophysical Research Communications 320: 1020-1025 (2004).
- Krishnamurthy, P., Ross, D. D., Nakanishi, T., Bailey-Dell, K., Zhou, S., Mercer, K. E., Sarkadi, B., Sorrentino, B. P. and Schuetz, J. D. The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with Heme. Journal of Biological Chemistry 279: 24218-24225 (2004).
- Larson, R. A., Marley, K. A., Tuveson, R. W. and Berenbaum, M. R. β-carboline alkaloids: Mechanisms of phototoxicity to bacteria and insects. Photochemistry and Photobiology48: 665-674 (2008).
- Liu, X., Kim, C. N., Yang, J., Jemmerson, R. and Wang, X. Induction of apoptotic program in cell-free extracts: Requirements for dATP and cytochrome C. Cell 86: 147-157 (1996).
- Logg, K., Bodvard, K., Blomberg, A. and Kall, M. Investigations on light-induced stress in fluorescence microscopy using nuclear localization of the transcription factor Msn2p as a reporter. FEMS Yeast Research 9: 875-884 (2009).
- Macho, A., DeCaudin, D., Castedo, M., Hirsch, T., Susin, S. A., Zamzami, N. and Kroemer, G. Chloromethyl-X-rosamine is an aldehyde-fixable potential-sensitive fluorochrome for the detection of early apoptosis. Cytometry Part A 25: 333-340 (1998).
- Marchetti, P., Decaudin, D., Macho, A., Zamzami, N., Hirsch, T., Susin, S. A. Kroemer, G. Redox regulation of apoptosis: Impact of thiol oxidation status on mitochondrial function.European Journal of Immunology 27: 289-296 (2005).
- Mastrangelo, A. J. and Betenbaugh, M. J. Implications and applications of apoptosis in cell culture. Current Opinion in Biotechnology 6: 198-202 (1995).
- Meewes, C., Brenneisen, P., Wenk, J., Kuhr, L., Ma, W., Alikoski, J., Poswig, A., Krieg, T. and Scharffetter-Kochanek, K. Adaptive antioxidant response protects dermal fibroblasts from UVA-induced phototoxicity. Free Radical Biology and Medicine 30: 238-247 (2001).
- Meikrantz, W. and Schelgel, R. Apoptosis and the cell cycle. Journal of Cellular Biochemistry 58: 160-174 (2004).
- Mellish, K. J., Cox, R. D., Vernon, D. I., Griffiths, J. and Brown, S. B. In vitro photodynamic activity of a series of methylene blue analogues. Photochemistry and Photobiology 75:392-397 (2007).
- Menon, I. A., Persad, S. D., Wakeham, A., Wiltshire, J. D. and Basu, P. K. Reactive oxygen species involved in the phototoxicity of rose Bengal to retinal pigment epithelial cells.Free Radical Biology and Medicine 9: 31 (1990).
- Michaeli, A. and Feitelson, J. Reactivity of singlet oxygen towards amino acids and peptides. Photochemistry and Photobiology 59: 284-289 (2008).
- Minamikawa, T., Williams, D. A., Bowser, D. N. and Nagley, P. Mitochondrial permeability transition and swelling can occur reversibly without inducing cell death in intact human cells. Experimental Cell Research 246: 26-37 (1999).
- Morys, M. and Berger, D. Accurate measurements of biologically effective ultraviolet radiation. Proceedings of SPIE 2049: 152-191 (1993).
- Oh, D. J., Lee, G. M., Francis, K. and Palsson, B. O. Phototoxicity of the fluorescent membrane dyes PKH2 and PKH26 on the human hematopoietic KG1 progenitor cell line.Cytometry 36A: 312-318 (1999).
- Paquette, B., Ali, H., Langlois, R. and Van Lier, J. E. Biological activities of phthalocyanines. VIII. Cellular distribution INV-79 Chinese hamster cells and phototoxicity of selectively sulfonated aluminum phthalocyanines. Photochemistry and Photobiology 47: 215-220 (2008).
- Peng, T., Chang, C. J., Guo, M. J., Wang, Y. H., Yu, J. S., Wu, H. Y. and Jou, M. J. Mitochondrion- targeted photosensitizer enhances the photodynamic effect-induced mitochondrial dysfunction and apoptosis. ANNALS of the New York Academy of Sciences1042: 419-428 (2006).
- Piotr, B. and Chignell, C. Application of singlet molecular oxygen phosphorescence measurements to assay antioxidant properties and phototoxicity of biological and environmental substances. Free Radical Biology and Medicine 25: S104 (1998).
- Ravanat, J. L., Douki, T. and Cadet, J. Direct and indirect effects of UV radiation on DNA and its components. Journal of Photochemistry and Photobiology B: Biology 63: 88-102 (2001).
- Roberts, J. E., Wielgus, A. R., Boyes, W. K., Andley, U. and Chignell, C. F. Phototoxicity and cytotoxicity of fullerol in human lens epithelial cells. Toxicology and Applied Pharmacology 228: 49-58 (2008).
- Rodriguez, M. E., Moran, F., Bonansea, A., Monetti, M., Fernandez, D. A., Strassert, C. A., Rivarola, V., Awruch, J. and Dicelio, L. E. A comparative study of the photophysical and phototoxic properties of octakis(decyloxy) phthalocyaninato zinc(II), incorporated in a hydrophilic polymer, in liposomes and in non-ionic micelles. Photochemical and Photobiological Sciences 2: 988-994 (2003).
- Rozanowska, M., Jarvis-Evans, J., Korytowski, W., Boulton, M. E., Burke, J. M. and Sarna, T. Blue light-induced reactivity of retinal age pigment. In vitro generation of oxygen-reactive species. Journal of Biological Chemistry 270: 18825-18830 (1995).
- Rubio, N., Rajadurai, A., Held, K. D., Prise, K. M., Liber, H. L. and Redmond, R. W. Real-time imaging of novel spatial and temporal responses to photodynamic stress. Free Radical Biology and Medicine 47: 283-290 (2009).
- Rubio, N., Fleury, S. P. and Redmond, R. W. Spatial and temporal dynamics of in vitrophotodynamic cell killing: Extracellular hydrogen peroxide mediates neighbouring cell death. Photochemical and Photobiological Sciences 8: 457-464 (2009).
- Schleger, R. A., Phelps, B. M., Cofer, G. P. and Williamson, P. Enucleation eliminates a differentiation-specific surface from normal and leukemic murine erythroid cells.Experimental Cell Research 139: 321-328 (1982).
- Schneckenburger, H., Sailer, R., Gschwend, M. H., Kunzi-Rapp, K., Tregub, I. and Strauss, W. S. L. Uptake, subcellular localization, and phototoxicity of photosensitizing porphyrins.Proceedings of SPIE 2625: 96-102 (1996).
- de Schryver, F. and Nonell, S. Microscopy beyond imaging: Space-resolved photochemistry and photobiology. Photochemical and Photobiological Sciences 8: 441 (2009).
- Shimoda, K. and Kato, M. Apoptotic photoreceptor cell death induced by quinolone phototoxicity in mice. Toxicology Letters 105: 9-15 (1999).
- Sinha, R. P. and Hader, D. P. UV-induced DNA damage and repair: A review. Photochemical and Photobiological Sciences 1: 225-236 (2002).
- Son, Y., Kokk, S., Jang, Y., Shi, X. and Lee, J. Critical role of poly(ADP-ribose) polymerase-1 in modulating the mode of cell death caused by continuous oxidative stress. Journal of Cellular Biochemistry 108: 989-997 (2009).
- Suzuki, Y. J., Forma, H. J. and Sevanian, A. Oxidants as stimulators of signal transduction.Free Radical Biology and Medicine 22: 269-285 (1997).
- Theodossiou, T. A., Noronha-Dutra, A. and Hothersall, J. Mitochondria are a primary target of hypericin phototoxicity: Synergy of intracellular calcium mobilization in cell killing.International Journal of Biochemistry and Cell Biology 38: 1946-1956 (2006).
- Valkonen, M., Kalkman, E. R., Saloheimo, M., Penttila, M., Read, N. D. and Duncan, R. R. Spatially segregated SNARE protein interactions in living fungal cells. Journal of Biological Chemistry 282: 22775-22785 (2007).
- Viola, G., Facciolo, L., Dall'Acqua, S., Di Lisa, F., Canoton, M., Vedaldi, D., Fravolini, A., Tabarrini, O. and Cecchetti, V. 6-Aminoquinolones: Photostability, cellular distribution and phototoxicity. Toxicology in Vitro 18: 581-592 (2004).
- Wadewitz, A. G. and Lockshin, R. A. Programmed cell death: Dying cells synthesize a coordinated, unique set of proteins in two different episodes of cell death. FEBS Letters241: 19-23 (1988).
- Wainwright, M., Phoenix, D. A., Rice, L., Burrow, S. M. and Waring, J. Increased cytotoxicity and phototoxicity in the methylene blue series via chromophore methylation. Journal of Photochemistry and Photobiology B: Biology 40: 233-239 (1997).
- Wang, C., Fang, K., Yang, C. amd Tzeng, S. Reactive oxygen species-induces cell death of rat primary astrocytes through mitochondria-mediated mechanism. Journal of Cellular Biochemistry 107: 933-943 (2009).
- Wang, W., Fang, H., Groom, L., Cheng, A., Zhang, W., Liu, J., Wang, X., Li, K., Han, P., Zheng, M., Yin, J., Wang, W., Mattson, M. P., Kao, J. P. Y., Lakatta, E. G., Sheu, S. S., Ouyang, K., Chen, J., Dirksen, R. T. and Cheng, H. Superoxide flashes in single mitochondria. Cell 134:279-290 (2008).
- Wielgus, A. R., Zhao, B., Chignell, C. F., Hu, D. and Roberts, J. E. Phototoxicity and cytotoxicity of fullerol in humans retinal pigment epithelial cells. Toxicology and Applied Pharmacology 242: 79-90 (2010).
- Wright, A., Hawkins, C. L. and Davies, M. J. Photo-oxidation of cells generates long-lived intracellular protein peroxides. Free Radical Biology and Medicine 34: 637-647 (2003).
- Wright, A., Bubb, W. A., Hawkins, C. L. and Davies, M. J. Singlet-oxygen-mediated protein oxidation: Evidence for the formation of reactive side chain peroxides on tyrosine residues. Photochemistry and Photobiology 76: 35-46 (2007).
- Yakubovskaya, R. I., Oganezov, V. K., Shytova, L. A., Karmakova, T. A., Vorozhtsov, G. N. and Kuzmin, S. G. Photodynamic activity of a number of photosensitizers in vitro. Proceedings of SPIE 2924: 75 (1996).
- Yoon, J. H., Lee, C. S., O'Conner, T. R., Yasui, A. and Pfeifer, G. P. The DNA damage spectrum produced by simulated sunlight. Journal of Molecular Biology 299: 681-693 (2000).
- Zhang, J., Wang, X., Bove, K. E. and Xu, M. DNA fragmentation factor 45-deficient cells are more resistant to apoptosis and exhibit different dying morphology than wild-type control cells. Journal of Biological Chemistry 280: 27960-27969 (2005).
- Zhou, Z., Yang, H. and Zhang, Z. Role of calcium in phototoxicity of 2-butylamino-2-demethoxy-hypocrellin A to human gastric cancer MGC-803 cells. Biochimica et Biophysica Acta 1593: 191-200 (2003).