CALI Literature References
Specialized fluorescent proteins are emerging as useful reagents for chromophore-assisted light inactivation (CALI) due to their ability to selectively target specific proteins. In CALI, a photosensitizer chromophore is attached to a target protein, usually through genetically-encoded fusion mechanisms. Illumination of the chromophore generates reactive oxygen species (ROS), which are potent protein inactivators that are sufficiently short-lived as to inactivate only the target protein, thus limiting damage to surrounding molecules.
Recommended Literature
- Tour, O. EGFP as your targeted 'hitman'. Nature Methods 2: 491-492 (2005).
- Bulina, M. E., Lukyanov, K. A., Britanova, O. V., Onichtchouk, D., Lukyanov, S. and Chudakov, D. M. Chromophore-assisted light inactivation (CALI) using the phototoxic fluorescent protein KillerRed. Nature Protocols 1: 947-953 (2006).
- Liao, J. C., Roider, J. and Jay, D. G. Chromophore-assisted laser inactivation of proteins is mediated by the photogeneration of free radicals. Proceedings of the National Academy of Sciences (USA) 91: 2659-2663 (1994).
Additional Literature Sources
- Jay, D. G. and Sakurai, T. Chromophore-assisted laser inactivation (CALI) to elucidate cellular mechanisms of cancer. Biochimica et Biophysica Acta 1424: M39-M48 (1999).
- Jimenez-Banzo, A., Nonell, S., Hofkens, J. and Flors, C., Singlet oxygen photosensitization by EGFP and its chromophore HBDI. Biophysical Journal 94: 168-172 (2008).
- Marks, K. M., Braun, P. D. and Nolan G. P. A general approach for chemical labeling and rapid, spatially controlled protein inactivation. Proceedings of the National Academy of Sciences (USA) 101: 9982-9987 (2004).
- Moor, A. C. E. Signaling pathways in cell death and survival after photodynamic therapy.Journal of Photochemistry and Photobiology 57: 1-13 (2000).
- Rajfur, Z., Roy, P., Otey, C., Romer, L. and Jacobson, K. Dissecting the link between stress fibres and focal adhesions by CALI with EGFP fusion proteins. Nature Cell Biology 4: 286-294 (2002).
- Rubenwolf, S., Niewohner, J., Meyer, E., Petit-Frere, C., Rudert, F., Hoffmann, P. R. and Ilag, L. L. Functional proteomics using chromophore-assisted laser inactivation. Proteomics 2:241-246 (2002).
- Schmucker, D., Su, A., Beerman, A., Jackle, H. and Jay, D. G. Chromophore-assisted laser inactivation of patched protein switches cell fate in the larval visual system of DrosophilaProceedings of the National Academy of Sciences (USA) 91: 2664-2668 (1994).
- Surrey, T., Elowitz, M. B., Wolf, P. E., Yang, F., Nedelec, F., Shokat, K. and Leibler, S. Chromophore-assisted light inactivation and self-organization of microtubules and motors. Proceedings of the National Academy of Sciences (USA) 95: 4293-4298 (1998).
- Tanabe, T., Oyamada, M., Fujita, K., Dai, P., Tanaka, H. and Takamatsu, T. Multiphoton excitation-evoked chromophore-assisted laser inactivation using green fluorescent protein. Nature Methods 2: 503-505 (2005).
- Tour, O., Meijer, R. M., Zacharias, D. A., Adams, S. R. and Tsien, R. Y. Genetically targeted chromophore-assisted light inactivation. Nature Biotechnology 21: 1505-1508 (2003).
- Vitriol, E. A., Uetrecht, A. C., Shen, F., Jacobson, K. and Bear, J. E. Enhanced EGFP-chromophore-assisted laser inactivation using deficient cells rescued with functional EGFP fusion proteins. Proceedings of the National Academy of Sciences (USA) 104: 6702-6707 (2007).