Fluorophore Photobleaching Literature References
Photobleaching (also termed fading) occurs when a fluorophore permanently loses the ability to fluoresce due to photon-induced chemical damage and covalent modification. Upon transition from an excited singlet state to the excited triplet state, fluorophores may interact with another molecule to produce irreversible covalent modifications. The triplet state is relatively long-lived with respect to the singlet state, thus allowing excited molecules a much longer timeframe to undergo chemical reactions with components in the environment. The average number of excitation and emission cycles that occur for a particular fluorophore before photobleaching is dependent upon the molecular structure and the local environment. Some fluorophores bleach quickly after emitting only a few photons, while others that are more robust can undergo thousands or millions of cycles before bleaching.
Recommended Literature
- Ghauharali, R. I. and Brakenhoff, G. J. Fluorescence photobleaching-based image standardization for fluorescence microscopy. Journal of Microscopy 198: 88-100 (2001).
- Ghauharali, R. I., Hofstraat, J. W. and Brakenhoff, G. J. Fluorescence photobleaching-based shading correction for fluorescence microscopy. Journal of Microscopy 192: 99-113 (1998).
- Bernas, T., Robinson, J. P., Asem, E. K. and Rajwa, B. Loss of image quality in photobleaching during microscopic imaging of fluorescent probes bound to chromatin.Journal of Biomedical Optics 10: 064015 (2005).
- Berglund, A. J. Nonexponential statistics of fluorescence photobleaching. Journal of Chemical Physics 121: 2899-2903 (2004).
- Greenbaum, L., Rothmann, C., Lavie, R. and Malik, Z. Green fluorescent protein photobleaching: A model for protein damage by endogenous and exogenous singlet oxygen. Biological Chemistry 381: 1251-1258 (2000).
- Song, L., Hennink, E. J., Young, I. T. and Tanke, H. Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy. Biophysical Journal 68: 2588-2600 (1995).
- Eggeling, C., Widengren, J., Rigler, R. and Seidel, C. A. M. Photobleaching of fluorescent dyes under conditions used for single molecule detection: Evidence of two-step photolysis. Analytical Chemistry 70: 2651-2659 (1998).
- Patterson, G. H. and Piston, D. W. Photobleaching in two-photon excitation microscopy.Biophysical Journal 78: 2159-2162 (2000).
- Giloh, H. and Sedat, J. W. Fluorescence microscopy: Reduced photobleaching of rhodamine and fluorescein protein conjugates by n-propyl gallate. Science 217: 1252-1255 (1982).
Additional Literature Sources
- Basche, T. Fluorescence intensity fluctuations of single atoms, molecules and nonparticles. Journal of Luminescence 76-77: 263-269 (1998).
- Beghetto, C., Renken, C., Eriksson, O., Jori, G., Bernardi, P. and Ricchelli, F. Implications of the generation of reactive oxygen species by photoactivated calcein for mitochondrial studies. European Journal of Biochemistry 267: 5585-5592 (2003).
- Bernas, T., Asem, E. K., Robinson, J. P., Cook, P. R. and Dobrucki, J. W. Confocal fluorescence imaging of photosensitized DNA denaturation in cell nuclei. Photochemistry and Photobiology 81: 960-969 (2007).
- Bernas, T., Zarebski, M., Cook, R. R. and Dobrucki. J. W. Minimizing photobleaching during confocal microscopy of fluorescent probes bound to chromatin: Role of anoxia and photon flux. Journal of Microscopy 215: 281-296 (2004).
- Bou-Abdallah, F., Chasteen, N. D. and Lesser, M. P. Quenching of superoxide radicals by green fluorescent protein. Biochimica et Biophysica Acta 1760: 1690-1695 (2006).
- Cheng, T. S., Zeng, S. Q., Luo, Q. M., Zhang, Z. H. and Zhou, W. High-order photobleaching of green fluorescent protein inside live cells in two-photon excitation microscopy.Biochemical and Biophysical Research Communications 291: 1272-1275 (2002).
- Chirico, G., Cannone, F., Baldini, G. and Diaspro, A. Two-photon thermal bleaching of single fluorescent molecules. Biophysical Journal 84: 588-598 (2003).
- Chirico, G., Cannone, F., Beretta, S., Diaspro, A., Campanini, B., Bettati, S., Ruotolo, R. and Mozzarelli, A. Dynamics of green fluorescent protein mutant2 in solution, on spin-coated glasses, and encapsulated in wet silica gels. Protein Science 11: 1152-1161 (2002).
- Chirico, G., Cannone, F., Diaspro, A., Bologna, S., Pellegrini, V., Nifosi, R. and Beltram, F. Multiphoton switching dynamic of single green fluorescent proteins. Physical Review E70:030901 (2004).
- Delon, A., Usson, Y., Derouard, J., Biben, T. and Souchier, C. Photobleaching, mobility, and compartmentalization: Inferences in fluorescence correlation spectroscopy. Journal of Fluorescence 14: 255-267 (2004).
- Crosby, G. A. and Demas, J. N. Measurement of photoluminescence quantum yields. Review. The Journal of Physical Chemistry 75: 991-1024 (1971).
- Deschenes, L. A. and Vanden Bout, D. A. Single molecule photobleaching: Increasing photon yield and survival time through suppression of two-step photolysis. Chemical Physics Letters 365: 387-395 (2002).
- Dittrich, P. S. and Schwille, P. Photobleaching and stabilization of fluorophores used for single-molecule analysis with one- and two-photon excitation. Applied Physics B 71: 829-837 (2001).
- Dobrucki, J. W. Interaction of oxygen-sensitive luminescent probes Ru(phen)32+ and Ru(bipy)32+ with animal and plant cells in vitro: Mechanism of phototoxicity and conditions for non-invasive oxygen measurements. Journal of Photochemistry and Photobiology B: Biology 65: 136-144 (2001).
- Drummond, D. R., Carter, N. and Cross, R. A. Multiphoton versus confocal high resolution z-sectioning of the enhanced green fluorescent microtubules: Increased multiphoton photobleaching within the focal plane can be compensated using a Pockels cell and dual widefield detectors. Journal of Microscopy 206: 161-169 (2002).
- Ghauharali, R., Van Driel, R. and Brakenhoff, G. Structure-orientated fluorescence photobleaching analysis: A method for double fluorescent labeling studies. Journal of Microscopy 185: 375-384 (2003).
- Gordon, M. P., Ha, T. and Selvin, P. R. Single-molecule high-resolution imaging with photobleaching. Proceedings of the National Academy of Sciences, USA 101: 6462-6465 (2004).
- Hirschfeld, T. Quantum efficiency independence of the time integrated emission from a fluorescent molecule. Applied Optics 15: 3135-3139 (1976).
- Kanofsky, J. R. and Sima, P. D. Structural and environmental requirements for quenching of singlet oxygen by cyanine dyes. Photochemistry and Photobiology 71: 361-368 (2000).
- Kudryavtsev, V., Felekyan, S., Wozniak, A. K., Konig, M., Sandhagen, C., Kuhnemuth, R., Seidel, C. A. M. and Oesterhelt, F. Monitoring dynamic systems with multiparameter fluorescence imaging. Analytical and Bioanalytical Chemistry 387: 71-82 (2007).
- Murray, J. M. Evaluating the performance of the fluorescence microscopes. Journal of Microscopy 191: 128-134 (1998).
- Oostveldt, P. V., Verhaegen, F. and Messens, K. Heterogeneous photobleaching in confocal microscopy caused by differences in refractive index and excitation mode. CytometryA32: 137-146 (1998).
- Sinnecker, D., Voigt, P., Hellwig, N. and Schaefer, M. Reversible photobleaching of enhanced green fluorescent proteins. Biochemistry 44: 7085-7094 (2005).
- Song, L., Varma, C. A. G. O., Verhoeven, J. W. and Tanke, H. J. Influence of the triplet excited state on the photobleaching kinetics of fluorescein in microscopy. Biophysical Journal 70:2959-2968 (1996).
- Song, L., van Gijlswijk, R. P. M., Young, I. T. and Tanke, H. J. Influence of fluorochrome labeling density on the photobleaching kinetics of fluorescein in microscopy. CytometryA27: 213-223 (1998).
- Swaminathan, R., Hoang, C. P. and Verkman, A. S. Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion. Biophysical Journal 72: 1900-1907 (1997).
- White, J. and Stelzer, E. Photobleaching GFP reveals protein dynamics inside live cells.Trends in Cell Biology 9: 61-65 (1999).
- Widengren, J. and Rigler, R. Mechanisms of photobleaching investigated by fluorescence correlation spectroscopy. Bioimaging 4: 149-157 (1998).