FRET Literature References
Limitations in determination of the spatial proximity of protein molecules can be overcome by applying Förster (or Fluorescence) Resonance Energy Transfer (FRET) microscopy techniques. FRET occurs between two appropriately positioned fluorophores only when the distance separating them is 8 to 10 nanometers or less. Thus, FRET is well-suited to the investigation of protein interactions that occur between two molecules positioned within several nanometers of each other. Over the past ten years, FRET approaches have gained popularity due to the rise in applications requiring genetically targeting of specific proteins and peptides using fusions to green fluorescent protein (GFP) and its mutated derivatives.
Recommended Literature
- Jares-Erijman, E. A., and Jovin, T. M. FRET imaging. Nature Biotechnology 21: 1387-1395 (2003).
- Berney, C. and Danuser, G. FRET or no FRET: a quantitative comparison. Biophysical Journal 84: 3992-4010 (2003).
- Piston, D. W. and Kremers, G. J. Fluorescent protein FRET: the good, the bad and the ugly.Trends in Biochemical Sciences 32: 407-414 (2007).
- Gordon, G. W., Berry, G., Liang, X. H., Levine, B. and Herman, B. Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophysical Journal 74: 2702-2713 (1998).
- Chen, H., Puhl, H. L., Koushik, S. V., Vogel, S. S. and Ikeda, S. R. Measurement of FRET efficiency and ratio of donor to acceptor concentration in living cells. Biophysical Journal91: L39-L41 (2006).
- Wallrabe, H., Chen, Y., Periasamy, A. and Barroso, M. Issues in confocal microscopy for quantitative FRET analysis. Microscopy Research and Technique 69: 196-206 (2006).
- Kenworthy, A. K. Imaging protein-protein interactions using fluorescence resonance energy transfer microscopy. Methods 24: 289-296 (2001).
- Piljic, A., Schultz, C. Simultaneous recording of multiple cellular events by FRET. ACS Chemical Biology 3: 156-160 (2008).
- Galperin, E., Verkhusha, V. V., and Sorkin, A. Three-chromophore FRET microscopy to analyze multiprotein interactions in living cells. Nature Methods 1: 209-217 (2004).
- Centonze, V. E., Sun, M., Masuda, A., Gerritsen, H. and Herman, B. Fluorescence resonance energy transfer imaging microscopy. Methods in Enzymology 360: 542-560 (2003).
- Periasamy, A. Fluorescence resonance energy transfer microscopy: A mini review. Journal of Biomedical Optics 6: 287-291 (2001).
- Haustein, E., Jahnz, M. and Schwille, P. Triple FRET: A tool for studying long-range molecular interactions. ChemPhysChem 4: 745-748 (2003).
- Patterson, G. H., Piston, D. W. and Barisas, B. G. Förster distances between green fluorescent protein pairs. Analytical Biochemistry 284: 438-440 (2000).
- Ciruela, F. Fluorescence-based methods in the study of protein-protein interactions in living cells. Current Opinion in Biotechnology 19: 338-343 (2008).
- Roy, R., Hohng, S. and Ha, T. A practical guide to single-molecule FRET. Nature Methods 5:507-516 (2008).
- Wallrabe, H. and Periasamy, A. Imaging protein molecules using FRET and FLIM microscopy. Current Opinion in Biotechnology 16: 19-27 (2005).
- Cardullo, R. A. and Parpura, V. Fluorescence resonance energy transfer microscopy: Theory and instrumentation. Methods in Cell Biology 72: 415-430 (2003).
- Selvin, P. R. The renaissance of fluorescence resonance energy transfer. Nature Structural Biology 7: 730-734 (2000).
- Mattheyses, A. L., Hoppe, A. D. and Axelrod, D. Polarized fluorescence resonance energy transfer microscopy. Biophysical Journal 87: 2787-2797 (2004).
- Pfleger, K. D. G. and Eidne, K. A. Illuminating insights into protein-protein interactions using bioluminescence resonance energy transfer (BRET). Nature Methods 3: 165-174 (2006).
- Stryer, L. Fluorescence energy transfer as a spectroscopic ruler. Annual Review of Biochemistry 47: 819-846 (1978).
Additional Literature Sources
- Albertazzi, L., Arosio, D., Marchetti, L., Ricci, F. and Beltram, F. Quantitative FRET analysis with the E0GFP-mCherry fluorescent protein pair. Photochemistry and Photobiology 85:287-297 (2009).
- Amiri, H., Schultz, G. and Schaefer, M. FRET-based analysis of TRPC subunit stoichiometry.Cell Calcium 33: 463-470 (2003).
- Bacskai, B. J., Hochner, B., Mahaut-Smith, M., Adams, S. R., Kaang, B. K., Kandel,E. R. and Tsien, R. Y. Spatially resolved dynamics of cAMP and protein kinase A subunits in aplysia sensory neurons. Science 260: 222-226 (1993).
- Ballestrem, C., Erez, N., Kirchner, J., Kam, Z., Bershadsky, A. and Geiger, B. Molecular mapping of tyrosine-phosphorylated proteins in focal adhesions using fluorescence resonance energy transfer. Journal of Cell Science 119: 866-875 (2006).
- Bastiaens, P. I. H. and Pepperkok, R. Observing proteins in their natural habitat: the living cell. Trends in Biochemical Sciences 25: 631-637 (2000).
- Bayle, V.Nussaume, L and Bhat, R. A. Combination of novel green fluorescent protein mutant T-Sapphire and DsRed variant mOrange to set up a versatile in planta FRET-FLIM assay. Plant Physiology 148: 51-60 (2008).
- Chan, F. K. M., Siegel, R. M., Zacharias, D., Swofford, R., Holmes, K. L., Tsien, R. Y. and Lenardo, M. J. Fluorescence Resonance Energy Transfer analysis of cell surface receptor interactions and signaling using spectral variants of the green fluorescent protein.Cytometry A44: 361-368 (2001).
- Chen, Y. and Periasamy, A. Intensity range based quantitative FRET data analysis to localize protein molecules in live cell nuclei. Journal of Fluorescence 16: 95-104 (2006).
- Chen, Y. and Periasamy, A. Characterization of two-photon excitation fluorescence lifetime imaging microscopy for protein localization. Microscopy Research and Technique 63: 72-80 (2004).
- Chen, Y., Mauldin, J. P., Day, R. N., and Periasamy A. Characterization of spectral FRET imaging microscopy for monitoring nuclear protein interactions. Journal of Microscopy228: 139-152 (2007).
- Chen, Y. and Mills, J. D. Protein localization in living cells and tissues using FRET and FLIM. Differentiation 71: 528-541 (2003).
- Chilibeck, K. A., Wu, T., Liang, C., Schellenberg, M. J., Gesner, E. M., Lynch, J. M. and MacMillan, A. M. FRET Analysis of in vivo dimerization by RNA-editing enzymes. Journal of Biological Chemistry 281: 16530-16535 (2006).
- Chiu, Y. L., Cao, H. and Rana, T. M. Quantitative analysis of RNA-mediated protein-protein interactions in living cells by FRET. Chemical Biology and Drug Design 69: 233-239 (2007).
- Clegg, R. M., Murchie, A. I. H. and Lilley, D. M. J. The solution structure of the four-way DNA junction at low-salt conditions: a fluorescence resonance energy transfer analysis.Biophysical Journal 66: 99-109 (1994).
- Dale, R. E., Eisinger, J. and Blumberg, W. E. The orientational freedom of molecular probes The orientation factor in intramolecular energy transfer. Biophysical Journal 26: 161-194 (1979).
- Day, R., N. and Piston, D. W. Spying on the hidden lives of proteins. Nature Biotechnology17: 425-426 (1999).
- Day, R. N. and Booker, C. F. and Periasamy, A. Characterization of an improved donor fluorescent protein for Förster resonance energy transfer microscopy. Journal of Biomedical Optics 13: 0311203 (2008).
- Day, R. N., Nordeen, S. K. and Wan, Y., Visualizing protein-protein interactions in the nucleus of the living cell. Molecular Endocrinology 13: 517-526 (1999).
- Day, R. N., Periasamy, A. and Schaufele, F. Fluorescence resonance energy transfer microscopy of localized protein interactions in the living cell nucleus. Methods 25: 4-18 (2001).
- Day, R. N. Visualization of Pit-1 transcription factor interactions in the living cell nucleus by fluorescence resonance energy transfer microscopy. Molecular Endocrinology 12:1410-1419 (1998).
- De, A., Loening, A. M. and Gambhir, S. S. An improved bioluminescence resonance energy transfer strategy for imaging intracellular events in single cells and living subjects.Cancer Research 67: 7175-7183 (2007).
- Demarco, I. A., Periasamy, A., Booker, C. F. and Day, R. N. Monitoring dynamic protein interactions with photoquenching FRET. Nature Methods 3: 519-524 (2006).
- Derdowski, A. Ding, L and Spearman, P. A novel fluorescence resonance energy transfer assay demonstrates that the human immunodeficiency virus type 1 Pr55Gag I domain mediates Gag-Gag interactions. Journal of Virology 78: 1230-1242 (2004).
- DiPilato, L. M. and Zhang, J. FRETting mice shed light on cardiac adrenergic signaling.Circulation Research 99: 1021-1023 (2006).
- Domanov, Y. A. and Gorbenko, G. P. Analysis of resonance energy transfer in model membranes: Role of orientational effects. Biophysical Chemistry 99: 143-154 (2002).
- Domingo, B., Sabariegos, R., Picazo,F. and Llopis, J. Imaging FRET standards by steady-state fluorescence and lifetime methods. Microscopy Research and Technique 70: 1010-1021 (2007).
- Dos Remedios, C. G. and Moens, P. D. J. Fluorescence resonance energy transfer spectroscopy is a reliable "ruler" for measuring structural changes in proteins: Dispelling the problem of the unknown orientation factor. Journal of Structural Biology 115: 175-185 (1995).
- Elangovan, M., Wallrabe, H., Chen, Y., Day, R. N., Barroso, M. and Periasamy, A. Characterization of one- and two-photon excitation fluorescence resonance energy transfer microscopy. Methods 29: 58-73 (2003).
- Elangovan, M., Day, R. N. and Periasamy, A. Nanosecond fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy to localize the protein interactions in a single living cell. Journal of Microscopy 205: 3-14 (2002).
- Erickson, M. G., Moon, D. L. and Yue, D. T. DsRed as a potential FRET partner with CFP and GFP. Biophysical Journal 85: 599-611 (2003).
- Evers, T. H., van Dongen, E. M. W. M., Faesen, A. C., meijer, E. W. and Merkx, M. Quantitative understanding of the energy transfer between fluorescent proteins connected via flexible peptide linkers. Biochemistry 45: 13183-13192 (2006).
- Forde, T. S. and Hanley, Q. S. Following FRET through five energy transfer steps: Spectroscopic photobleaching, recovery of spectra and a sequential mechanism of FRET.Photochemical and Photobiological Sciences 4: 609-616 (2005).
- Gaibelet, G., Planchenault, T., Mazeres, S., Dumas, F., Arenzana-Seisdedos, F., Lopez, A., Lagane, B. and Bachelerie, F. CD4 and CCR5 constitutively interact at the plasma membrane of living cells. Journal of Biological Chemistry 281: 37921-37929 (2006).
- Gautier, I., Tramier, M., Durieux, C., Coppey, J., Pansu, R. B., Nicolas, J. C., Kemnitz, K. and Coppey-Moisan, M. Homo-FRET microscopy in living cells to measure monomer-dimer transition of GFP-tagged proteins. Biophysical Journal 80: 3000-3008 (2001).
- Goedhart, J., Vermeer, J. E. M., Adjobo-Hermans, M. J. W., van Weeren, L., Gadella Jr., T. W. J. Sensitive detection of p65 homodimers using red-shifted and fluorescent protein-based FRET couples. PLoS ONE 10: e1011 (2007).
- Grant, D. M., Zhang, W., McGhee, E. J., Bunney, T. D., Talbot, C. B., Kumar, S., munro, I., Dunsby, C., Neil, M. A. A., Katan, M. and French, P. M. W. Multiplexed FRET to image multiple signaling events in live cells. Biophysical Journal 95: L69-L71 (2008).
- Guo, C., Dower, S. K., Holowka, D. and Baird, B. Fluorescence resonance energy transfer reveals interleukin (IL)-1-dependent aggregation of IL-1 Type I receptors that correlates with receptor activation. Journal of Biological Chemistry 270: 27562-27568 (1995).
- Hachet-Haas, M., Converset, N., Marchal, O., Matthes, H., Gioria, S., Galzi, J. L. and Lecat, S. FRET and colocalization analyzer-a method to validate measurements of sensitized emission FRET acquired by confocal microscopy and available as an ImageJ plug-in.Microscopy Research and Technique 69: 941-956 (2006).
- Harpur, A. G., Wouters, F. S. and Bastiaens, P. I. H. Imaging FRET between spectrally similar GFP molecules in single cells. Nature Biotechnology 19: 167-169 (2001).
- He, L., Bradrick, T. D., Karpova, T. S., Wu, X., Fox, M. H., Fischer, R., McNally, J. G., Knutson, J. R., Grammer, A. C. and Lipsky, P. E. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm. Cytometry 53A: 39-54 (2003).
- He, L., Grammers, A. C., Wu, X. and Lipsky, P. E. TRAF3 forms heterotrimers with TRAF2 and modulates its ability to mediate NF-kappaB activation. Journal of Biological Chemistry279: 55855-55865 (2004).
- He, L., Wu, X., Simone, J., Hewgill, D. and Lipsky, P. E. Determination of tumor necrosis factor receptor-associated factor trimerization in living cells by CFP, YFP, and mRFP FRET detected by flow cytometry. Nucleic Acids Research 33: e61 (2005).
- Hering, V. R., Gibson, G., Schumacher, R. I., Faljoni-Alario, A. and Politi, M. J. Energy transfer between CdSe/ZnS core/shell quantum dots and fluorescent proteins. Bioconjugate Chemistry 18: 1705-1708 (2007).
- Hink, M. A., Visser, N. V., Borst, J. W., van Hoek, A. and Visser, A. J. W. G. Practical use of corrected fluorescence excitation and emission spectra of fluorescent proteins in Förster resonance energy transfer (FRET) studies. Journal of Fluorescence 13: 185-188 (2003).
- Hoffman, C., Gaietta, G., Bunemann, M., Adams, S. R., Oberdorff-Maass, S., Behr, B., Vilardaga, J. P., Tsien, R. Y., Ellisman, M. H., and Lohse, M. J. A FlAsH-based FRET approach to determine G protein-coupled receptor activation in living cells. Nature Methods 2: 171-176 (2005).
- Hohng, S., Joo, C. and Ha, T. Single-molecule three-color FRET. Biophysical Journal 87:1328-1337 (2004).
- Hoppe, A., Christensen, K. and Swanson, J. A. Fluorescence Resonance Energy Transfer-based stoichiometry in living cells. Biophysical Journal 83: 3652-3664 (2002).
- Hoppe, A. D., Shorte, S. L., Swanson, J. A. and Heintzmann, R. Three-dimensional FRET reconstruction microscopy for analysis of dynamic molecular interactions in live cells.Biophysical Journal 95: 400-418 (2008).
- Jarve, A., Muller, J., Kim, I. H., Rohr, K., MacLean, C., Fricker, G., Massing, U., Eberle, F., Dalpke, A., Fischer, R., Trendelenburg, M. F. and Helm, M. Surveillance of siRNA integrity by FRET imaging. Nucleic Acids Research 35: e124 (2007).
- Jensen, A. A., Hansen, J. L., Sheikh, S. P. and Brauner-Osborne, H. Probing intermolecular protein-protein interactions in the calcium-sensing receptor homodimer using bioluminescence resonance energy transfer (BRET). European Journal of Biochemistry269: 5076-5087 (2002).
- Kaganman, I. FRETting for a more detailed interactome. Nature Methods 4: 112-113 (2007).
- Karasawa, S., Araki, T., Nagai, T., Mizuno, H. and Miyawaki, A. Cyan-emitting and orange-emitting fluorescent proteins as a donor/acceptor pair for fluorescence resonance energy transfer. Biochemical Journal 381: 307-312 (2004).
- Karpova, T. S., Baumann, C. T., He, L., Wu, X., Grammer, A., Lipsky, P., Hager, G. L., and McNally, J. G. Fluorescence resonance energy transfer from cyan to yellow fluorescent protein detected by acceptor photobleaching using confocal microscopy and a single laser. Journal of Microscopy 209: 56-70 (2003).
- Kirber, M. T., Chen, K., and Keaney Jr, J. F. YFP photoconversion revisited: confirmation of the CFP-like species. Nature Methods 4: 767-768 (2007).
- Koushik, S. V., Chen, H., Thaler, C., Puhl, H. L. and Vogel, S. S. Cerulean, Venus, and VenusY67C FRET reference standards. Biophysical Journal 91: L99-L101 (2006).
- Kremers, G. J., Goedhart, J., van Munster, E. B. and Gadella, Jr., T. W. J. Cyan and yellow super fluorescent proteins with improved brightness, protein folding, and FRET Förster Radius. Biochemistry 45: 6570-6580 (2006).
- Kukolka, F., Muller, B. K., Paternoster, S., Arndt, A., Niemeyer, C. M., Brauchle, C. and Lamb, D. C. A single-molecule Förster resonance energy transfer analysis of fluorescent DNA-protein conjugates for nanobiotechnology. Small 2: 1083-1089 (2006).
- Kuppig, S., and Nitschke, R. A fusion tag enabling optical marking and tracking of proteins and cells by FRET-acceptor photobleaching. Journal of Microscopy 222: 15-21 (2006).
- Laib, S. and Seeger, S. FRET studies of the interaction of dimeric cyanine dyes with DNA.Journal of Fluorescence 14: 187-191 (2004).
- Leuba, S. H., Anand, S. P., Harp, J. M., and Khan, S. A. Expedient placement of two fluorescent dyes for investigating dynamic DNA protein interactions in real time.Chromosome Research 16: 451-467 (2008).
- Majoul, I. Analysing the action of bacterial toxins in living cells with fluorescence resonance energy transfer (FRET). International Journal of Medical Microbiology 293: 495-503 (2004).
- Mao, S., Benninger, R. K. P., Yan, Y., Petchprayoon, C., Jackson, D., Easley, C. J., Piston, D. W. and Marriott, G. Optical lock-in detection of FRET using synthetic and genetically encoded optical switches. Biophysical Journal 94: 4515-4524 (2008).
- Martin, S. F., Tatham, M. H., Hay, R. T. and Samuel, I. D. W. Quantitative analysis of multi-protein interactions using FRET: application to the SUMO pathway. Protein Science 17:777-784 (2008).
- Millington, M., Grindlay, G. J., Altenbach, K., Neely, R. K., Kolch, W., Bencina, M., Read, N. D., Jones, A. C., Dryden, D. T. F. and Magennis, S. W. High-precision FLIM-FRET in fixed and living cells reveals heterogeneity in a simple CFP-YFP fusion protein. Biophysical Chemistry 127: 155-164 (2007).
- Mills, J. D., Stone, J. R., Rubin, D. G., Melon, D. E., Okonkwo, D. O., Periasamy, A. and Helm, G. A. Illuminating protein interactions in tissue using confocal and two-photon excitation fluorescent resonance energy transfer microscopy. Journal of Biomedical Optics 8: 347-356 (2003).
- Mitra, R. D., Silva, C. M. and Youvan, D. C. Fluorescence resonance energy transfer between blue-emitting and red-shifted excitation derivatives of the green fluorescent protein. Gene173: 13-17 (1996).
- Miyawaki, A. Visualization of the spatial and temporal dynamics of intracellular signaling.Developmental Cell 4: 295-305 (2003).
- Mizuno, H., Sawano, A., Eli, P., Hama, H. and Miyawaki, A. Red fluorescent protein from Discosoma as a fusion tag and a partner for fluorescence resonance energy transfer.Biochemistry 40: 2502-2510 (2001).
- Morse, D. Imaging protein-protein interactions in plants and single cells. Proceedings of the National Academy of Sciences (USA) 104: 9917-9918 (2007).
- Ng, T., Squire, A., Hansra, G., Bornancin, F., Prevostel, C., Hanby, A., Harris, W., Barnes, D., Schmidt, S., Mellor, H., Bastiaens, P. I. H. and Parker, P. J. Imaging protein kinase C-alpha activation in cells. Science 283: 2085-2089 (1999).
- Nguyen, A. W. and Daugherty, P. S. Evolutionary optimization of fluorescent proteins for intracellular FRET. Nature Biotechnology 23: 355-360 (2005).
- Niino, Y., Hotta, K., Oka, K. Simultaneous live cell imaging using dual FRET sensors with a single excitation light. PLoS One 4: e6036 (2009).
- Ohashi, T., Galiacy, S. D., Briscoe, G. and Erickson, H. P. An experimental study of GFP-based FRET, with application to intrinsically unstructured proteins. Protein Science 16:1429-1438 (2007).
- Patel, R. C., Kumar, U., Lamb, D. C., Eid, J. S., Rocheville, M., Grant, M., Rani, A., Hazlett, T., Patel, S. C., Gratton, E. and Patel, Y. C. Ligand binding to somatostatin receptors induces receptor-specific oligomer formation in live cells. Proceedings of the National Academy of Sciences (USA) 99: 3294-3299 (2002).
- Periasamy, A. and Day, R. N. Visualizing protein interactions in living cells using digitized GFP imaging and FRET microscopy. Methods in Cell Biology 58: 293-314 (1999).
- Peter, M., Ameer-Beg, S. M., Hughes, M. K. Y., Keppler, M. D., Prag, S., Marsh, M., Vojnovic, B. and Ng, T. Multiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions. Biophysical Journal 88: 1224-1237 (2005).
- Peyker, A., Rocks, O. and Bastiaens, P. I. H. Imaging activation of two Ras isoforms simultaneously in a single cell. ChemBioChem 6: 78-85 (2005).
- Pham, E., Chiang, J., Li, I., Shum, W. and Truong, K. A computational tool for designing FRET protein biosensors by rigid-body sampling of their conformational space. Structure15: 515-523 (2007).
- Philipps, B., Hennecke, J. and Glockshuber, R. FRET-based in vivo screening for protein folding and increased protein stability. Journal of Molecular Biology 327: 239-249 (2003).
- Pollok, B. A. and Heim, R. Using GFP in FRET-based applications. Trends in Cell Biology 9:57-60 (1999).
- Pons, T., Medintz, I. L., Wang, X., English, D. S. and Mattoussi, H. Solution-phase single quantum dot fluorescence resonance energy transfer. Journal of the American Chemical Society 128: 15324-15331 (2006).
- Rizzo, M. A. and Piston, D. W. High-contrast imaging of fluorescent protein FRET by fluorescence polarization microscopy. Biophysical Journal 88: L14-L16 (2005).
- Rizzo, M. A., Magnuson, M. A., Drain, P. F. and Piston, D. W. A functional link between glucokinase binding to insulin granules and conformational alterations in response to glucose and insulin. Journal of Biological Chemistry 277: 34168-34175 (2002).
- Rizzo, M. A., Springer, G., Segawa, K., Zipfel, W. R. and Piston, D. W. Optimization of pairings and detection conditions for measurement of FRET between cyan and yellow fluorescent proteins. Microscopy and Microanalysis 12: 238-254 (2006).
- Rizzuto, R., Brini, M., De Giorgi, F., Rossi, R., Heim, R., Tsien, R. Y. and Pozzan, T. Double labeling of subcellular structures with organelle-targeted GFP mutants in vivo. Current Biology 6: 183-188 (1996).
- Rodighiero, S., Bazzani, C., Ritter, M., Furst, J., Botta, G., Meyer, G. and Paulmichl, M. Fixation, mounting and sealing with nail polish of cell specimens lead to incorrect FRET measurements using acceptor photobleaching. Cellular Physiology and Biochemistry 21:489-498 (2008).
- Sapsford, K. E., Berti, L and Medintz, I. L. Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations. Angewandte Chemie International Edition 45: 4562-4588 (2006).
- Schuttrigkeit, T. A., Zachariae, U., von Feilitzsch, T., Wiehler, J., von Hummel, J., Steipe, B. and Michel-Beyerle, M. E. Picosecond time-resolved FRET in the fluorescent protein from Discosoma red (wt-DsRed). ChemPhysChem 2: 325-328 (2001).
- Sekar, R. B. and Periasamy, A. Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. Journal of Cell Biology 160 629-633 (2003).
- Shimozono, S. and Miyawaki, A. Engineering FRET constructs using CFP and YFP. Methods in Cell biology 85: 381-393 (2008).
- Shimozono, S., Hosoi, H., Mizuno, H., Fukano, T., Tahara, T. and Miyawaki, A. Concatenation of cyan and yellow fluorescent proteins for efficient resonance energy transfer. Biochemistry45: 6267-6271 (2006).
- Siegel, R. M., Chan, F. K. M., Zacharias, D. A., Swofford, R., Holmes, K. L., Tsien, R. Y. and Lenardo, M. J. Measurement of molecular interactions in living cells by fluorescence resonance energy transfer between variants of the green fluorescent protein. Science Signaling STKE 2000: pl1 (2000).
- Snapp, E. L. and Hegde, B. S. Rational design and evaluation of FRET experiments to measure protein proximities in cells. Current Protocols in Cell Biology 17.9: 17.9.1-17.9.20 (2006).
- Souslova, E. A. and Chudakov, D. M. Photoswitchable cyan fluorescent protein as a FRET donor. Microscopy Research and Technique 69: 207-209 (2006).
- Squire, A., Verveer, P. J., Rocks, O. and Bastiaens, P. I. H. Red-edge anisotropy microscopy enables dynamic imaging of homo-FRET between green fluorescent proteins in cells.Journal of Structural Biology 147: 62-69 (2004).
- Sugawa, M., Arai, Y., Iwane, A. H., Ishii, Y. and Yanagida, T. Single molecule FRET for the study on structural dynamics of biomolecules. BioSystems 88: 243-250 (2007).
- Tadross, M. R., Park, S. A., Veeramani, B. and Yue, D. T. Robust approaches to quantitative ratiometric FRET imaging of CFP/YFP fluorophores under confocal microscopy. Journal of Microscopy 233: 192-204 (2009).
- Takanishi, C. L., Bykova, E. A., Cheng, W. and Zheng, J. GFP-based FRET analysis in live cells. Brain Research 1091: 132-139 (2006).
- Thaler, C., Koushik, S. V., Blank, P. S. and Vogel, S. S. Quantitative multiphoton spectral imaging and its use for measuring resonance energy transfer. Biophysical Journal 89:2736-3749 (2005).
- Thaler, C., Vogel, S. S., Ikeda, S. R., and Chen, H. Photobleaching of YFP does not produce a CFP-like species that affects FRET measurements. Nature Methods 3: 491-505 (2006).
- Ting, A. Y., Kain, K. H., Klemke, R. L. and Tsien, R. Y. Genetically encoded fluorescent reporters of protein tyrosine kinase activities in living cells. Proceedings of the National Academy of Sciences (USA) 98: 15003-15008 (2001).
- Tramier, M., Gautier, I., Piolot, T., Ravalet, S., Kemnitz, K., Coppey, J., Durieux, C., Mignotte, V. and Coppey-Moisan, M. Picosecond-hetero-FRET microscopy to probe protein-protein interactions in live cells. Biophysical Journal 83: 3570-3577 (2002).
- Tramier, M., Zahid, M., Mevel, J. C., Masse, M. J. and Coppey-Moisan, M. Sensitivity of CFP/YFP and GFP/mCherry pairs to donor photobleaching on FRET determination by fluorescence lifetime imaging microscopy in living cells. Microscopy Research and Technique 69: 933-939 (2006).
- Truong, K., Sawano, A., Mizuno, H., Hama, H., Tong, K. I., Mal, T. K., Miyawaki, A. and Ikura, M. Fret-based in vivo Ca2+ imaging by a new calmodulin-GFP fusion molecule. Nature Structural Biology 8: 1069-1073 (2001).
- Valentin, G., Verheggen,C., Piolot, T., Neel, H., Coppey-Moisan, M. and Bertrand, E. Photoconversion of YFP into a CFP-like species during acceptor photobleaching FRET experiments. Nature Methods 2: 801 (2005).
- Van Munster, E. B., Kremers, G. J., Adjobo-Hermans, M. J. W. and Gadella Jr, T. W. J. Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching. Journal of Microscopy 218: 253-262 (2005).
- van Rheenen, J., Langeslag, M. and Jalink, K. Correcting confocal acquisition to optimize imaging of fluorescence resonance energy transfer by sensitized emission. Biophysical Journal 86: 2517-2529 (2004).
- van Roessel, P. and Brand, A. H. Imaging into the future: Visualizing gene expression and protein interactions with fluorescent proteins. Nature Cell biology 4: E15-E20 (2002).
- van Wageningen, S., Pennings, A. H., van der Reijden, B. A., Boezeman, J. B., de Lange, F. and Jansen, J. H. Isolation of FRET-positive cells using single 408-nm laser flow cytometry.Cytometry 69A: 291-298 (2006).
- Vanderklish, P. W., Krushel, L. A., Holst, B. H., Gally, J. A., Crossin, K. L. and Edelman, G. M. Marking synaptic activity in dendritic spines with a calpain substrate exhibiting fluorescence resonance energy transfer. Proceedings of the National Academy of Sciences (USA) 97: 2253-2258 (2000).
- Verveer, P. J., Rocks, O., Harpur, A. G. and Bastiaens, P. I. H. Imaging protein interactions by FRET microscopy: cell preparation for FRET analysis. CSH Protocols DOI:10.1101/pdb.prot4646 (2006).
- Vogel, S. S., Thaler, C. and Koushik, S. V. Fanciful FRET. Science Signaling STKE 2006: 331, re2 (2006).
- Wallrabe, H., Elangovan, M., Burchard, A., Periasamy, A. and Barroso, M. Confocal FRET microscopy to measure clustering of ligand-receptor complexes in endocytic membranes.Biophysical Journal 85: 559-571 (2003).
- Wallrabe, H., Stanley, M., Periasamy, A., Barroso, M. One-and two-photon fluorescence resonance energy transfer microscopy to establish a clustered distribution of receptor-ligand complexes in endocytic membranes. Journal of Biomedical Optics 8: 339-346 (2003).
- Watrob, H. M., Pan, C. P. and Barkley, M. D. Two-step FRET as a structural tool. Journal of the American Chemical Society 125: 7336-7343 (2003).
- Weiss, S. Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy. Nature Structural and Molecular Biology 7: 724-729 (2000).
- Willemse, M., Janssen, E., de Lange, F., Wieringa, B., and Fransen, J. ATP and FRET-a cautionary note. Nature Biotechnology 25: 170-172 (2007).
- Wu, P. and Brand, L. Resonance Energy Transfer: Methods and Applications. Analytical Biochemistry 218: 1-13 (1994).
- Wu, X., Simone, J., Hewgill, D., Siegel, R. Lipsky, P. E. and He, L. Measurement of two caspase activities simultaneously in living cells by a novel dual FRET fluorescent indicator probe. Cytometry 69A: 477-486 (2006).
- Xia, Z. and Liu, Y. Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes. Biophysical Journal 81: 2395-2402 (2001).
- Xu, X., Soutto, M., Xie, Q., Servick, S., Subramanian, C., von Arnim, A. G. and Johnson C. H. Imaging protein interactions with bioluminescence resonance energy transfer (BRET) in plant and mammalian cells and tissues. Proceedings of the National Academy of Sciences (USA) 104: 10264-10269 (2007).
- Yang, X., Xu, P., Xu, T. A new pair for inter- and intra-molecular FRET measurement.Biochemical and Biophysical Research Communications 330: 914-920 (2005).
- Yasuda, R. Imaging spatiotemporal dynamics of neuronal signaling using fluorescence resonance energy transfer and fluorescence lifetime imaging microscopy. Current Opinion in Neurobiology 16: 551-561 (2006).
- You, X., Nguyen, A. W., Jabaiah, A., Sheff, M. A., Thorn, K. S. and Daugherty, P. S. Intracellular protein interaction mapping with FRET hybrids. Proceedings of the National Academy of Sciences (USA) 103: 18458-18463 (2006).
- Zaccolo, M. Use of chimeric fluorescent proteins and fluorescence resonance energy transfer to monitor cellular responses. Circulation Research 94: 866-873 (2004).
- Zal, T. and Gascoigne, N. R. J. Photobleaching-corrected FRET efficiency imaging of live cells. Biophysical Journal 86: 3923-3939 (2004).
- Zhang, J., Ma, Y., Taylor, S. S. and Tsien, R. Y. Genetically encoded reporters of protein kinase A activity reveal impact of substrate tethering. Proceedings of the National Academy of Sciences (USA) 98: 14997-15002 (2001).
- Zimmerman, T., Rietdorf, J., Girod, A., Georget, V. and Pepperkok, R. Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair.FEBS Letters 531: 245-249 (2002).