Optical Highlighter Literature References
Investigations into the complex photophysical properties of fluorescent protein variants have led to the generation of chromophores that must be activated to either initiate fluorescence emission from a quiescent state (photoactivation) or to be optically converted from one fluorescence emission bandwidth to another (photoconversion). These proteins are emerging as a powerful new class of probes, ideal for the investigation of protein dynamics in live-cell imaging. Perhaps more appropriately termed molecular or optical highlighters, photoactivatable or photoconvertible fluorescent proteins can be used in the direct and controlled highlighting of distinct molecular pools within the cell.
Recommended Literature
- Ando, R., Hama, H., Yamamoto-Hino, M., Mizuno, H. and Miyawaki, A. An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein.Proceedings of the National Academy of Sciences (USA) 99: 12651-12656 (2002).
- Chudakov, D. M., Belousov, V. V., Zaraisky, A. G., Novoselov, V. V., Staroverov, D. B., Zorov, D. B., Lukyanov, S. and Lukyanov, K. A. Kindling fluorescent proteins for precise in vivo photolabeling. Nature Biotechnology 21: 191-194 (2003).
- Miyawaki, A. Innovations in the imaging of brain functions using fluorescent proteins.Neuron 48: 189-199 (2005).
- Nienhaus, K., Nienhaus, G. U., Wiedenmann, J. and Nar, H. Structural basis for photo-induced protein cleavage and green-to-red conversion of fluorescent protein EosFP.Proceedings of the National Academy of Sciences (USA) 102: 9156-9159 (2005).
- Patterson, G. H. and Lippincott-Schwartz, J. Selective photolabeling of proteins using photoactivatable GFP. Methods 32: 445-450 (2004).
- Andresen, M., Stiel, A. C., Folling, J., Wenzel, D., Schonle, A., Egner, A., Eggeling, C., Hell, S. W. and Jakobs, S. Photoswitchable fluorescent proteins enable monochromatic multilabel imaging and dual color fluorescence nanoscopy. Nature Biotechnology 26: 1035-1040 (2008).
- Chudakov, D. M., Chepurnykh, T. V., Belousov, V. V., Lukyanov, S. and Lukyanov, K. A. Fast and precise protein tracking using repeated reversible photoactivation. Traffic 7: 1304-1310 (2006).
- Tsutsui, H., Karasawa, S., Shimizu, H., Nukina, N. and Miyawaki, A. Semi-rational engineering of a coral fluorescent protein into an efficient highlighter. EMBO reports 6: 233-238 (2005).
- Hatta, K., Tsujii, H. and Omura, T. Cell tracking using a photoconvertible fluorescent protein.Nature Protocols 1: 960-967 (2006).
- Kennis, J. T. M., Larsen, D. S., van Stokkum, I. H. M., Vengris, M., van Thor, J. J. and van Grondelle, R. Uncovering the hidden ground state of green fluorescent protein.Proceedings of the National Academy of Sciences (USA) 101: 17988-17993 (2004).
- Shagin, D. A., Barsova, E. V., Yanushevich, Y. G., Fradkov, A. F., Lukyanov, K. A., Labas, Y. A., Semenova, T. N., Ugalde, J. A., Meyers, A., Nunez, J. M., Widder, E. A., Lukyanov, S. A. and Matz, M. V. GFP-like proteins as ubiquitous metazoan superfamily: Evolution of functional features and structural complexity. Molecular Biology and Evolution 21: 841-850 (2004).
- Subach, F. V., Subach, O. M., Gundorov, I. S., Morozova, K. S., Piatkevich, K. D., Cuervo, A. M. and Verkhusha, V. V. Monomeric fluorescent timers that change color from blue to red report on cellular trafficking. Nature Chemical Biology 5: 118-126 (2009).
- Subach, F. V., Patterson, G. H., Manley, S., Gillette, J. M., Lippincott-Schwartz, J. and Verkhusha, V. V. Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. Nature Methods 6: 153-159 (2009).
Additional Literature Sources
- Adams, S. R., Kao, J. P. Y., Grynkiewicz, G., Minta, A. and Tsien, R. Y. Biologically useful chelators that release Ca2+ upon illumination. Journal of the American Chemical Society110: 3212-3220 (1988).
- Adam, V., Lelimousin, M., Boehme, S., Desfonds, G., Nienhaus, K., Field, M. J., Wiedenmann, J., McSweeney, S., Nienhaus, G. U. and Bourgeois, D. Structural characterization of IrisFP, an optical highlighter undergoing multiple photo-induced transformations. Proceedings of the National Academy of Sciences (USA) 105: 18343-18348 (2008).
- Adam, V., Nienhaus, K., Bourgeois, D. and Nienhaus, G. U. Structural basis of enhanced photoconversion yield in green fluorescent protein-like protein Dendra2. Biochemistry 48:4905-4915 (2009).
- Amat, P., Granucci, G., Buda, F., Persico, M. and Tozzini, V. The chromophore of asFP595: A theoretical study. The Journal of Physical Chemistry B 110: 9348-9353 (2006).
- Ando, R., Flors, C., Mizuno, H., Hofkens, J. and Miyawaki, A. Highlighted generation of fluorescence signals using simultaneous two-color irradiation on Dronpa mutants.Biophysical Journal 92: L97-L99 (2007).
- Ando, R., Mizuno, H. and Miyawaki, A. Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science 306: 1370-1373 (2004).
- Andresen, M., Stiel, A. C., Trowitzsch, S., Weber, G., Eggeling, C., Wahl, M. C., Hell, S. W. and Jakobs, S. Structural basis for reversible photoswitching in Dronpa. Proceedings of the National Academy of Sciences (USA) 104: 13005-13009 (2007).
- Andresen, M., Wahl, M. C., Stiel, A. C., Grater, F., Schafer, L. V., Trowitzsch, S., Weber, G., Eggeling, C., Grubmuller, H., Hell, S. W. and Jakobs, S. Structure and mechanism of the reversible photoswitch of a fluorescent protein. Proceedings of the National Academy of Sciences (USA) 102: 13070-13074 (2005).
- Anikin, K., Rocker, C., Wittemann, A., Weidenmann, J., Ballauff, M. and Nienhaus, G. U. Polyelectrolyte-mediated protein adsorption: Fluorescent protein binding to individual polyelectrolyte nanospheres. The Journal of Physical Chemistry B 109: 5418-5420 (2005).
- Aramaki, S. and Hatta, K. Visualizing neurons one-by-one in vivo: Optical dissection and reconstruction of the neural networks with reversible fluorescent proteins. Developmental Dynamics 235: 2192-2199 (2006).
- Arimura, S., Yamamoto, J., Aida, G. P., Nakazono, M. and Tsutsumi, N. Frequent fusion and fission of plant mitochondria with unequal nucleoid distribution. Proceedings of the National Academy of Sciences (USA) 101: 7805-7808 (2004).
- Asselberghs, I., Flors, C., Ferrighi, L., Botek, E., Champagne, B., Mizuno, H., Ando, R., Miyawaki, A., Hofkens, J., Van der Auweraer, M. and Clays, K. Second-harmonic generation in GFP-like proteins. Journal of the American Chemical Society 130: 15713-15719 (2008).
- Bates, M., Blosser, T. R. and Zhuang, X. Short-range spectroscopic ruler based on a single-molecule optical switch. Physical Review Letters 94: 108101-4 (2005).
- Bell, A. F., Stoner-Ma, D., Wachter, R. M. and Tonge, P. J. Light-driven decarboxylation of wild-type green fluorescent protein. Journal of the American Chemical Society 125: 6919-6926 (2003).
- Bossi, M., Belov, V., Polyakova, S. and Hell, S. W. Reversible red fluorescent molecular switches. Angewandte Chemie International Edition 45: 7462-7465 (2006).
- Brunet, S., Zimmermann, T., Reynaud, E. G., Vernos, I., Karsenti, E. and Pepperkok, R. Detection and quantification of protein-microtubules interactions using green fluorescent protein photoconversion. Traffic 7: 1283-1289 (2006).
- Bulina, M. E., Lukyanov, K. A., Britanova, O. V., Onichtchouk, D., Lukyanov, S. and Chudakov, D. M. Chromophore-assisted light inactivation (CALI) using the phototoxic fluorescent protein KillerRed. Nature Protocols 1: 947-953 (2006).
- Calvert, P. D., Peet, J. A., Bragin, A., Schiesser, W. E. and Pugh Jr., E. N. Fluorescence relaxation in 3D from diffraction-limited sources of PA-GFP or sinks of EGFP created by multiphoton photoconversion. Journal of Microscopy 225: 49-71 (2007).
- Chen, Y., MacDonald, P. J., Skinner, J. P., Patterson, G. H. and Muller, J. D. Probing nucleocytoplasmic transport by two-photon activation of PA-GFP. Microscopy Research and Technique 69: 220-226 (2006).
- Chudakov, D. M., Feofanov, A. V., Mudrik, N. N., Lukyanov, S. and Lukyanov, K. A. Chromophore environment provides clue to "kindling fluorescent protein" riddle. The Journal of Biological Chemistry 278: 7215-7219 (2003).
- Chudakov, D. M., Lukyanov, S. and Lukyanov, K. A. Tracking intracellular protein movements using photoswitchable fluorescent proteins PS-CFP2 and Dendra2. Nature Biotechnology2: 2024-2032 (2007).
- Chudakov, D. M., Verkhusha, V. V., Staroverov, D. B., Souslova, E. A., Lukyanov, S. and Lukyanov, K. A. Photoswitchable cyan fluorescent protein for protein tracking. Nature Protocols 22: 1435-1439 (2004).
- Cinelli, R. A. G., Pellegrini, V., Ferrari, A., Faraci, P., Nifosi, R., Tyagi, M., Giacca, M. and Beltram, F. Green fluorescent proteins as optically controllable elements in bioelectronics.Applied Physics Letters 79: 3353-3355 (2001).
- Cotlet, M., Hofkens, J., Hohn, F., Michiels, J., Dirix, G., Van Guyse, M., Vanderleyden, J. and De Schryver, F. C. Collective effects in individual oligomers of the red fluorescent coral proteins DsRed. Chemical Physics Letters 336: 415-423 (2001).
- Cotlet, M., Hofkens, J., Maus, M., Gensch, T., Van der Auweraer, M., Michiels, J., Dirix, G., Van Guyse, M., Vanderleyden, J., Visser, A. J. W. G. and De Schryver, F. C. Excited-state dynamics in the enhanced green fluorescent protein mutant probed by picosecond time-resolved single photon counting spectroscopy. The Journal of Physical Chemistry B 105: 4999-5006 (2001).
- Creemers, T. M. H., Lock, A. J., Subramaniam, V., Jovin, T. M. and Volker, S. Photophysics and optical switching in green fluorescent protein mutants. Proceedings of the National Academy of Sciences (USA) 97: 2974-2978 (2000).
- de Souza, N. New twists on photoswitchable proteins. Nature Methods 5: 858-859 (2008).
- Dedecker, P., Hotta, J., Flors, C., Sliwa, M., Uji-I, H., Roeffaers, M. B. J., Ando, R., Mizuno, H., Miyawaki, A. and Hofkens, J. Subdiffraction imaging through the selective donut-mode depletion of thermally stable photoswitchable fluorophores: Numerical analysis and application to the fluorescent protein Dronpa. Journal of the American Chemical Society129: 16132-16141 (2007).
- Dedecker, P., Hotta, J., Ando, R., Miyawaki, A., Engelborghs, Y. and Hofkens, J. Fast and reversible photoswitching of the fluorescent protein Dronpa as evidenced by fluorescence correlation spectroscopy. Biophysical Journal 91: L45-L47 (2006).
- Deryusheva, S. and Gall, J. G. Dynamics of coilin in Cajal bodies of the Xenopus germinal vesicle. Proceedings of the National Academy of Sciences (USA) 101: 4810-4814 (2004).
- Dittrich, P. S., Schafer, S. P. and Schwille, P. Characterization of the photoconversion on reaction of the fluorescent protein Kaede on the single-molecule level. Biophysical Journal 89: 3446-3455 (2005).
- Donner, A. Mimicking a pore. Nature Methods 6: 188-189 (2009).
- Dultz, E., Huet, S. and Ellenberg, J. Formation of the nuclear envelope permeability barrier studied by sequential photoswitching and flux analysis. Biophysical Journal 97: 1891-1897 (2009).
- Duncan, R. R., Greaves, J., Wiegand, U. K., Matskevich, I., Bodammer, G., Apps, D. K., Shipston, M. J. and Chow, R. H. Functional and spatial segregation of secretory vesicle pools according to vesicle age. Nature 422: 176-180 (2003).
- Eisentein, M. New fluorescent protein includes handy on-off switch. Nature Methods 2: 8-9 (2005).
- Elowitz, M. B., Surette, M. G., Wolf, P. E., Stock, J. and Leibler, S. Photoactivation turns green fluorescent protein red. Current Biology 7: 809-812 (1997).
- Enderlein, J. Breaking the diffraction limit dynamic saturation optical microscopy. Applied Physics Letters 87: 094105 (2005).
- Evanko, D. Highlighting protein movement in living cells. Nature Methods 1: 96-97 (2004).
- Fernandez-Acebes, A. and Lehn, J. M. Optical switching and fluorescence modulation properties of photochromic metal complexes derived from dithienylethene ligands.Chemistry - A European Journal 5: 3285-3292 (1999).
- Fischer, A. J., Coleman, W. J., Yang, M. M. and Lagarias, J. C. Engineering phytochromes: Biliproteins that switch and glow. Proceedings of SPIE 5329: 33 (2004).
- Flors, C., Hotta, J., Uji-I, H., Dedecker, P., Ando, R., Mizuno, H., Miyawaki, A. and Hofkens, J. A stroboscopic approach for fast photoactivation-localization microscopy with Dronpa mutants. Journal of the American Chemical Society 129: 13970-13977 (2007).
- Fron, E., Flors, C., Schweitzer, G., Habuchi, S., Mizuno, H., Ando, R., DeSchryver, F. C., Miyawaki, A. and Hofkens, J. Ultrafast excited-state dynamics of the photoswitchable protein Dronpa. Journal of the American Chemical Society 129: 4870-4870 (2007).
- Fukaminato, T., Umemoto, T., Iwata, Y. and Irie, M. Direct measurement of photochromic durability at the single-molecule level. Chemistry letters 34: 676 (2005).
- Fukaminato, T., Sasaki, T., Kawai, T., Tamai, N. and Irie, M. Digital photoswitching of fluorescence based on the photochromism of diarylethene derivatives at a single-molecule level. Journal of the American Chemical Society 126: 14843-14849 (2004).
- Giordano, L., Jovin, T. M., Irie, M. and James-Erijman, E. A. Diheteroarylethenes as thermally stable photoswitchable acceptors in photochromic fluorescence resonance energy transfer (pcFRET). Journal of the American Chemical Society 124: 7481-7489 (2002).
- Grigorenko, B., Savitsky, A., Topol, I., Burt, S. and Nemukhin, A. Ground-state structures and vertical excitations for the kindling fluorescent protein asFP595. The Journal of the Physical Chemistry B 110: 18635-18640 (2006).
- Gurskaya, N. G., Fradkov, A. F., Pounkova, N. I., Staroverov, D. B., Bulina, M. E., Yanushevich, Y. G., Labas, Y. A., Lukyanov, S. and Lukyanov, K. A. A colourless green fluorescent protein homologue from the non-fluorescent hydromedusa Aequorea coerulescens and its fluorescent mutants. Biochemical Journal. 373: 403-408 (2003).
- Gurskaya, N. G., Verkhusha, V. V., Shcheglov, A. S., Staroverov, D. B., Chepurnykh, T. V., Fradkov, A. F., Lukynov, S. and Lukynov, K. A. Engineering a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nature Biotechnology 24: 461-465 (2006).
- Habuchi, S., Ando, R., Dedecker, P., Verheijen, W., Mizuno, H., Miyawaki, A. and Hofkens, J. Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa.Proceedings of the National Academy of Sciences (USA) 102: 9511-9516 (2005).
- Habuchi, S., Cotlet, M., Gensch, T., Bednarz, T., Haber-Pohlmeier, S., Roznski,J., Dirix, G., Michiels, J., Vanderleyden, J., Heberle, J., De Schryver, F. C. and Hofkens, J. Evidence for the isomerization and decarboxylation in the photoconversion of the red fluorescent protein DsRed. Journal of the American Chemical Society 127: 8977-8984 (2005).
- Habuchi, S., Dedecker, P., Hotta, J., Flors, C., Ando, R., Mizuno, H., Miyawaki, A. and Hofkens, J. Photo-induced protonation/deprotonation in the GFP-like fluorescent protein Dronpa: Mechanism responsible for the reversible photoswitching. Photochemical and Photobiological Sciences 5: 567-576 (2006).
- Habuchi, S., Hidekazu, T., Kockaniak, A. B., Miyawaki, A. and van Oijen, A. M. mKikGR, a monomeric photoswitchable fluorescent protein. PLoS ONE 3: e3944-1-9 (2008).
- Hayashi, I., Mizuno, H., Tong, K. I., Furuta, T., Tanaka, F., Yoshimura, M., Miyawaki, A. and Ikura, M. Crystallographic evidence for water-assisted photo-induced peptide cleavage in the stony coral fluorescent protein Kaede. Journal of Molecular Biology 372: 918-926 (2007).
- Heilemann, M., Margeat, E., Kasper, R., Sauer, M. and Tinnefeld, P. Carbocyanine dyes as efficient reversible single-molecule optical switch. Journal of the American Chemical Society 127: 3801-3806 (2005).
- Hell, S. W. Strategy for far-field optical imaging and writing without diffraction limit.Physics Letters A 326: 140-145 (2004).
- Henderson, J. N. and Remington, S. J. The kindling fluorescent protein: A transient photoswitchable marker. Physiology 21: 162-170 (2006).
- Henderson, J. N., Gepshtein, R., Heenan, J. R., Kallio, K., Huppert, D. and Remington, S. J. Structure and mechanism of the photoactivatable green fluorescent protein. Journal of the American Chemical Society 131: 4176-4177 (2009).
- Hess, S. T., Girirajan, T. P. K. and Mason, M. D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophysical Journal 91: 4258-4272 (2006).
- Hosoi, H., Mizuno, H., Miyawaki, A. and Tahara, T. Competition between energy and proton transfer in ultrafast excited-state dynamics of an oligomeric fluorescent protein red Kaede. The Journal of Physical Chemistry B 110: 22853-22860 (2006).
- Irie, M. Diarylethenes for memories and switches. Chemical Reviews 100: 1685-1716 (2000).
- Irie, M. Photochromism: Memories and switches- Introduction. Chemical Reviews 100:1683-1684 (2000).
- Irie, M., Fukaminato, T., Sasaki, T., Tamai, N. and Kawai, T. Organic Chemistry: A digital fluorescent molecular photoswitch. Nature 420: 759-760 (2002).
- Ivanchenko, S., Glaschick, S., Rocker, C., Oswald, F., Wiedenmann, J. and Nienhaus, G. U. Two-photon excitation and photoconversion of EosFP in dual-color 4Pi confocal microscopy. Biophysical Journal 92: 4451-4457 (2007).
- Ivanchenko, S., Rocker, C., Oswald, F., Wiedenmann, J. and Nienhaus, G. U. Targeted green-red photoconversion of EosFP, a fluorescent marker protein. Journal of Biological Physics31: 249-259 (2005).
- Izquierdo, M. A., Bell, T. D. M., Habuchi, S., Fron, E., Pilot, R., Vosch, T., De Feyter, S., Verhoeven, J., Jacob, J., Mullen, K., Hofkens, J. and De Schryver, F. C. Switching of the fluorescence emission of single molecules between the locally excited and charge transfer states. Chemical Physics Letters 401: 503-508 (2005).
- Jakobs, S., Schauss, A. C. and Hell, S. W. Photoconversion of matrix targeted GFP enables analysis of continuity and intermixing of the mitochondrial lumen. FEBS Letters 554: 194-200 (2003).
- Jung, G., Wiehler, J. and Zumbusch, A. The photophysics of green fluorescent protein: Influence of the key amino acids at positions 65, 203, and 222. Biophysical Journal 88:1932-1947 (2005).
- Jung, G., Brauchle, C. and Zumbusch, A. Two-color fluorescence correlation spectroscopy of one chromophore: Application to the E222Q mutant of the green fluorescent protein.Journal of Chemical Physics 114: 3149-3156 (2001).
- Jung, G., Mais, S., Zumbusch, A. and Brauchle, C. The role of dark states in the photodynamics of the green fluorescent protein examined with two-color fluorescence excitation spectroscopy. The Journal of the Physical Chemistry A 104: 873-877 (2000).
- Karbowski, M., Arnoult, D., Chen, H., Chan, D. C., Smith, C. L. and Youle, R. J. Quantitation of mitochondrial dynamics by photolabeling of individual organelles shows that mitochondrial fusion is blocked during the Bax activation phase of apoptosis. The Journal of Cell Biology 164: 493-499 (2004).
- Lee, W. L., Kim, M., Schreiber, A. D. and Grinstein, S. Role of ubiquitin and proteasomes in phagosome maturation. Molecular Biology of the Cell 16: 2077-2090 (2005).
- Liang, Y. C., Dvornikov, A. S. and Rentzepis, P. M. Nonvolatile read-out molecular memory.Proceedings of the National Academy of Sciences (USA) 100: 8109-8112 (2003).
- Loos, D. C., Habuchi, S., Flors, C., Hotta, J., Wiedenmann, J., Nienhaus, G. U. and Hofkens, J. Photoconversion in the red fluorescent protein from the sea anemone Entacmaea quadricolor: Is Cis-Trans isomerization involved? Journal of the American Chemical Society 128: 6270-6271 (2006).
- Lukyanov, K. A., Fradkov, A. F., Gurskaya, N., Matz, M. V., Labas, Y. A., Savitsky, A. P., Markelov, M. L., Zaraisky, A. G., Zhao, X., Fang, Y., Tan, W. and Lukyanov, S. A. Natural animal coloration can be determined by a nonfluorescent green fluorescent protein homolog. The Journal of Biological Chemistry 275: 25879-25882 (2000).
- Mc Ananey, T. B., Zeng, W., Doe, C. F. E., Bhanji, N., Wakelin, S., Pearson, D. S., Abbyad, P., Shi, X., Boxer, S. G. and Bagshaw, C. R. Protonation, photobleaching, and photoactivation of yellow fluorescent protein (YFP 10C): A unifying mechanism! Biochemistry 44: 5510-5524 (2005).
- Mirabella, R., Franken, C., van der Krogt, G. N. M., Bisseling, T. and Geurts, R. Use of the fluorescent timer DsRED-E5 as reporter to monitor dynamics of gene activity in plants.Plant Physiology 135: 1879-1887 (2004).
- Mizuno, H., Mal, T. K., Walchli, M., Kikuchi, A., Fukano, T., Ando, R., Jeyakanthan, J., Taka, J., Shiro, Y., Ikura, M. and Miyawaki, A. Light-dependent regulation of structural flexibility in a photochromic fluorescent protein. Proceedings of the National Academy of Sciences (USA) 105: 9927-9932 (2008).
- Murray, M. J. and Saint, R. Photoactivatable GFP resolves Drosophila mesoderm migration.Development 134: 3975-3983 (2007).
- Mutoh, T., Miyata, T., Kashiwagi, S., Miyawaki, A. and Ogawa, M. Dynamic behavior of individual cells in developing organotypic brain slices revealed by the photoconvertable protein Kaede. Experimental Neurology 200: 430-437 (2006).
- Nam, K. H., Kwon, O. Y., Sugiyama, K., Lee, W. H., Kim, Y. K., Song, H. K., Kim, E. E., Park, S. Y., Jeon, H. and Hwang, K. Y. Structural characterization of the photoswitchable fluorescent protein Dronpa-C62S. Biochemical and Biophysical Research Communications 354: 962-967 (2007).
- Niu, L. and Yu, J. Investigating intracellular dynamics of FtsZ cytoskeleton with photoactivation single-molecule tracking. Biophysical Journal 95: 2009-2016 (2008).
- O'Connell, K. M. S. and Tamkun, M. M. Targeting of voltage-gated potassium channel isoforms to distinct cell surface microdomains. Journal of Cell Science 118: 2155-2166 (2005).
- Patterson, G. H. and Lippincott-Schwartz, J. Development of a photoactivatable fluorescent protein from Aequorea victoria GFP. Proceedings of SPIE 5329: 13-22 (2004).
- Post, J. N., Lidke, K. A., Rieger, B. and Arndt-Jovin, D. J. One-and two-photon photoactivation of a paGFP-fusion protein in live Drosophila embryos. FEBS Letters 579: 325-330 (2005).
- Quillin, M. L., Anstrom, D. M., Shu, X., O'Leary, S., Kallio, K., Chudakov, D. M. and Remington, S. J. Kindling fluorescent protein from Anemonia sulcata: Dark-state structure at 1.38 A resolution. Biochemistry 44: 5774-5787 (2005).
- Runions, J., Brach, T., Kuhner, S. and Hawes, C. Photoactivation of GFP reveals protein dynamics within the endoplasmic reticulum membrane. Journal of Experimental Botany57: 43-50 (2006).
- Salih, A., Larkum, A., Cronin, T., Wiedenmann, J., Szymczak, R. and Cox, G. Biological properties of coral GFP-type proteins provide clues for engineering novel optical probes and biosensors. Proceedings of SPIE 5329: (2004).
- Sauer, M. Reversible molecular photoswitches: A key technology for nanoscience and fluorescence imaging. Proceedings of the National Academy of Sciences (USA) 102: 9433-9434 (2005).
- Schafer, S. P., Dittrich, P. S., Petrov, E. P. and Schwille, P. Single molecule fluorescence imaging of the photoinduced conversion and bleaching behavior of the fluorescent protein Kaede. Microscopy Research and Technique 69: 210-219 (2006).
- Schafer, L. V., Groenhof, G., Klingen, A. R., Ullmann, G. M., Boggio-Pasqua, M., Robb, M. A. and Grubmuller, H. Photoswitching of the fluorescent protein asFP595: Mechanism, proton pathways, and absorption spectra. Angewandte Chemie International Edition 46: 530-536 (2007).
- Schenkel, M., Sinclair, A. M., Johnstone, D., Bewley, J. D. and Mathur, J. Visualizing the actin cytoskeleton in living plant cells using a photo-convertible mEos: FABD-mTn fluorescent fusion protein. Plant Methods 4: 21 (2008).
- Schermelleh, L., Spada, F., Easwaran, H. P., Zolghadr, K., Margot, J. B., Cardoso, M. C. and Leonhardt, H. Trapped in action: Direct visualization of DNA methyltransferase activity in living cells. Nature Methods 2: 751-756 (2005).
- Schneider, M., Barozzi, S., Testa, I., Faretta, M. and Diaspro, A. Two-photon activation and excitation properties of PA-GFP in the 720-920 nm region. Biophysical Journal 89: 1346-1352 (2005).
- Schuttrigkeit, T. A., von Feilitzsch, T., Kompa, C. K., Lukyanov, K. A., Savitsky, A. P., Voityuk, A. A. and Michel-Beyerle, M. Femtosecond study of light-induced fluorescence increase of the dark chromoprotein asFP595. Chemical Physics 323: 149-160 (2006).
- Schwentker, M. A., Bock, H., Hofmann, M., Jakobs, S., Bewersdorf, J., Eggeling, C. and Hell, S. W. Wide-field subdiffraction RESOLFT microscopy using fluorescent protein photoswitching. Microscopy Research and Technique 70: 269-280 (2007).
- Shav-Tal, Y., Darzacq, X., Shenoy, S. M., Fusco, D., Janicki, S. M., Spector, D. L. and Singer, R. H. Dynamics of single mRNPs in nuclei of living cells. Science 304: 1797-1800 (2004).
- Shimozono, S., Tsutsui, H. and Miyawaki, A. Diffusion of large molecules into assembling nuclei revealed using an optical highlighting technique. Biophysical Journal 97: 1288-1294 (2009).
- Shroff, H., Galbraith, C. G., Galbraith, J. A., White, H., Gillette, J., Olenych, S., Davidson, M. W. and Betzig, E. Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proceedings of the National Academy of Sciences (USA)104: 20308-20313 (2007).
- Souslova, E. A. and Chudakov, D. M. Photoswitchable cyan fluorescent protein as a FRET donor. Microscopy Research and Technique 69: 207-209 (2006).
- Stark, D. A. and Kulesa, P. M. Photoactivatable green fluorescent protein as a single-cell marker in living embryos. Developmental Dynamics 233: 983-992 (2005).
- Stark, D. A. and Kulesa, P. M. An in vivo comparison of photoactivatable fluorescent proteins in an avian embryo model. Developmental Dynamics 236: 1583-1594 (2007).
- Stiel, A. C., Trowitzsch, S., Weber, G., Andresen, M., Eggeling, C., Hell, S. W., Jakobs, S. and Wahl, M. C. 1.8 Angstrom bright-state structure of the reversibly switchable fluorescent protein Dronpa guides the generation of fast switching variants. Biochemical Journal 402:35-42 (2007).
- Stiel, A. C., Andresen, M., Bock, H., Hilbert, M., Schilde, J., Schonle, A., Eggeling, C., Egner, A., Hell, S. W. and Jakobs, S. Generation of monomeric reversibly switchable red fluorescent proteins for far-field fluorescence nanoscopy. Biophysical Journal 95: 2989-2997 (2008).
- Takeuchi, M. and Ozawa, T. Methods for imaging and analyses of intracellular organelles using fluorescent and luminescent proteins. Analytical Sciences 23: 25-29 (2007).
- Terskikh, A., Fradkov, A., Ermakova, G., Zaraisky, A., Tan, P., Kajava, A. V., Zhao, X., Lukyanov, S., Matz, M., Kim, S., Weissman, I. and Sieberty, P. "Fluorescent Timer": Protein that changes color with time. Science 290: 1585-1588 (2000).
- Testa, I., Parazzoli, D., Barozzi, S., Garre, M., Faretta, M. and Diaspro, A. Spatial control of pa-GFP photoactivation in living cells. Journal of Microscopy 230: 48-60 (2008).
- Tinnefel, P. and Sauer, M. Branching out of single-molecule fluorescence spectroscopy: Challenges for chemistry and influence on biology. Angewandte Chemie International Edition 44: 2642-2671 (2005).
- Tomura, M., Yoshida, N., Tanaka, J., Karasawa, S., Miwa, Y., Miyawaki, A. and Kanagawa, O. Monitoring cellular movement in vivo with photoconvertible fluorescence protein "Kaede" transgenic mice. Proceedings of the National Academy of Sciences (USA) 105: 10871-10876 (2008).
- Tretskovs, Y. A., Pakhomov, A. A. and Martynov, V. I. Chromophore structure of the kindling fluorescent protein asFP595 from Anemonia sulcata. Journal of the American Chemical Society 129: 7748-7749 (2007).
- Tsuriel, S., Fisher, A., Wittenmayer, N., Dresbach, T., Garner, C. C. and Ziv, N. E. Exchange and redistribution dynamics of the cytoskeleton of the active zone molecule bassoon. The Journal of Neuroscience 29: 351-358 (2009).
- Twig, G., Graf, S. A., Wikstrom, J. D., Mohamed, H., Haigh, S. E., Elorza, A., Deutsch, M., Zurgil, N., Reynolds, N. and Shirihai, O. S. Tagging and tracking individual networks within a complex mitochondrial web with photoactivatable GFP. American Journal of Physiology-Cell Physiology 291: 176-184 (2005).
- van Thor, J. J., Pierik, A. J., Nugteren-Roodzant, I., Xie, A. and Hellingwerf, K. J. Characterization of the photoconversion of green fluorescent protein with FTIR spectroscopy. Biochemistry 37: 16915-16921 (1998).
- van Thor, J. J., Gensch, T., Hellingwerf, K. J. and Johnson, L. N. Phototransformation of green fluorescent protein with UV and visible light leads to decarboxylation of glutamate 222.Nature Structural Biology 9: 37-41 (2001).
- Verkhusha, V. V. and Lukyanov, K. A. The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins. Nature Biotechnology 22: 289-296 (2004).
- Verkhusha, V. V. and Sorkin, A. Conversion of the monomeric red fluorescent protein into a photoactivatable probe. Chemistry and Biology 12: 279-285 (2005).
- Verkhusha, V. V., Otsuna, H., Awasaki, T., Oda, H., Tsukita, S. and Ito, K. An enhanced mutant of red fluorescent protein DsRed for double labeling and developmental timer of neural fiber bundle formation. The Journal of Biological Chemistry 276: 29621-29624 (2001).
- Vogt, A., D'Angelo, C., Oswald, F., Denzel, A., Mazel, C. H., Matz, M. V., Ivanchenko, S., Nienhaus, G. U. and Wiedenmann, J. A green fluorescent protein with photoswitchable emission from the deep sea. PLoS ONE 3: e3766 (2008).
- Wacker, S. A., Oswald, F., Wiedenmann, J. and Knochel, W. A green to red photoconvertible protein as an analyzing tool for early vertebrate development. Developmental Dynamics236: 473-480 (2007).
- Wang, D. O. Synapse-and stimulus-specific local translation during long-term neuronal plasticity. Science 324: 1536 (2009).
- Wiedenmann, J. and Nienhaus, G. U. Live-cell imaging with EosFP and other photoactivatable marker proteins of the GFP family. Expert Review of Proteomics 3: 361-374 (2006).
- Wiedenmann, J. and Nienhaus, G. U. Photoactivation in the green to red converting EosFP and other fluorescent proteins for the GFP family. Proceedings of SPIE 6098: 60981 (2006).
- Wiedenmann, J., Ivanchenko, S., Oswald, F., Schmitt, F., Rocker, C., Salih, A., Spindler, K. D. and Nienhaus, F. U. EosFP, A fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. Proceedings of the National Academy of Sciences (USA) 101:15905-15910 (2004).
- Wilmann, P. G., Petersen, J., Devenish, R. J., Prescott, M. and Rossjohn, J. Variations on the GFP chromophore. The Journal of Biological Chemistry 280: 2401-2404 (2005).
- Wilmann, P. G., Turcic, K., Battad, J. M., Wilce, M. C. J., Devenish, R. J., Prescott, M. and Rossjohn, J. The 1.7 Angstrom crystal structure of Dronpa: A photoswitchable green fluorescent protein. Journal of Molecular Biology 364: 213-224 (2006).
- Wolff, M., Wiedenmann, J., Nienhaus, G. U., Valler, M. and Heilker, R. Novel fluorescent proteins for high-content screening. Drug Discovery Today 11: 1054-1060 (2006).
- Xia, J., Kim, S. H. H., Macmillan, S. and Truant, R. Practical three color live cell imaging by widefield microscopy. Biological Procedures Online 8: 63-68 (2006).
- Yampolsky, I. V., Remington, J., Martynov, V. I., Potapov, V. K., Lukyanov, S. and Lukyanov, K. A. Synthesis and properties of the chromophore of the asFP595 chromoprotein from Anemonia sulcata. Biochemistry 44: 5788-5793 (2005).
- Zagranichny, V. E., Rudenko, N. V., Gorokhovatsky, A. Y., Zakharov, M. V., Shenkarev, Z. O., Balashova, T. A. and Arseniev, A. S. zFP538 a yellow fluorescent protein from coral, belongs to the DsRed subfamily of GFP-like proteins but possesses the unexpected site of fragmentation. Biochemistry 43: 4764-4772 (2004).
- Zagranichny, V. E., Rudenko, N. V., Gorokhovatsky, A. Y., Zakharov, M. V., Balashova, T. A. and Arseniev, A. S. Traditional GFP-type cyclization and unexpected fragmentation site in a purple chromoprotein from Anemonia sulcata. Biochemistry 43: 13598-13603 (2004).
- Zhang, L., Gurskaya, N. G., Merzlyak, E. M., Staroverov, D. M., Mudrik, N. N., Samarkina, O. N., Vinokurov, L. M., Lukyanov, S. and Lukyanov, K. A. Method for real-time monitoring of protein degradation at the single cell level. BioTechniques 42: 446-450 (2007).