Single-Molecule Localization for Superresolution Literature References
Single fluorescent molecules can be isolated from one another on the basis of one or more distinguishing optical characteristics and used as a basis for imaging using superresolution techniques with specimens having densely packed fluorophores. In this case, each fluorescent emitter can be localized to a much higher precision by determining the center of the point-spread function by applying a statistical fit of the ideal Gaussian to its measured photon distribution.
Recommended Literature
- Antelman, J., Wilking-Chang, C., Weiss, S. and Michalet, X. Nanometer distance measurements between multicolor quantum dots. Nano Letters 9: 2199-2205 (2009).
- Bates, M., Huang, B., Dempsey, G. T. and Zhuang, X. Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317: 1749-1753 (2007).
- Betzig, E., Patterson, G . H., Sougrat, R., Lindwasser, O. W., Olenych, S., Bonifacino, J. S., Davidson, M. W., Lippincott-Schwartz, J. and Hess, H. F. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313: 1642-1645 (2006).
- Biteen, J. S., Thompson, M. A., Tselentis, N. K., Bowman, G. R., Shapiro, L. and Moerner, W. E.Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP. Nature Methods 5: 947-949 (2008).
- Funatsu, T., Harada, Y., Tokunaga, M., Saito, K. and Yanagida, T. Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution.Nature 374: 555-559 (2002).
- Gelles, J., Schnapp, B. J. and Sheetz, M. P. Tracking kinesin-driven movements with nanometre-scale precision. Nature 331: 450-453 (1988).
- Gordon, M. P., Ha, T. and Selvin, P. R. Single-molecule high-resolution imaging with photobleaching. Proceedings of the National Academy of Sciences (USA) 101: 6462-6465 (2004).
- Heinlein, T., Biebricher, A., Schluter, P., Roth, C. M., Herten, D. P., Wolfrum, J., Heilemann, M., Muller, C., Tinnefeld, P. and Sauer, M. High-resolution colocalization of single molecules within the resolution gap of far-field microscopy. ChemPhysChem 6: 949-955 (2005).
- Hess, S. T., Giriajan, T. P. K. and Mason, M. D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophysical Journal 91: 4258-4272 (2006).
- Hu, D. and Orr, G. Nanometer resolution imaging by single molecule switching. Nano Reviews 1: 5122-5123 (2010).
- Joo, C., Balci, H., Ishitsuka, Y., Buranachai, C. and Ha, T. Advances in single-molecule fluorescence methods for molecular biology. Annual Review of Biochemistry 77: 51-76 (2008).
- Kapanidis, A. N. and Strick, T. Biology, one molecule at a time. Trends in Biochemical Sciences 34: 234-243 (2009).
- Lacoste, T. D., Michalet, X., Pinaud, F., Chemla, D. S., Alivisatos, A. P. and Weiss, S. Ultra high-resolution multicolor colocalization of single fluorescent probes. Proceedings of the National Academy of Sciences (USA) 97: 9461-9466 (2000).
- Lemmer, P., Gunkel, M., Baddeley, D., Kaufmann, R., Urich, A., Weiland, Y., Reymann, J., Muller, P., Hausmann, M. and Cremer, C. SPDM: Light microscopy with single-molecule resolution at the nanoscale. Applied Physics B: Lasers and Optics 93: 1-12 (2008).
- Lew, M. D., Thompson, M. A., Badieirostami, M. and Moerner, W. E. In vivo three-dimensional superresolution fluorescence tracking using a double-helix point spread function.Proceedings of SPIE 7571: 75710Z-13 (2010).
- Lippincott-Schwartz, J. and Patterson, G. H. Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging. Trends in Cell Biology 19: 555-565 (2009).
- Manley, S., Gillette, J. M. and Lippincott-Schwartz, J. Single-particle tracking photoactivated localization microscopy for single-molecule dynamics. Methods in Enzymology 475: 109-120 (2010).
- Michalet, X., Lacoste, T. D. and Weiss, S. Ultrahigh-resolution colocalization of spectrally separable point-like fluorescent probes. Methods 25: 87-102 (2001).
- Moerner, W. E. Illuminating single molecules in condensed matter. Science 283: 1670-1676 (1999).
- Ober, R. J., Ram, S. and Ward, E. S. Localization accuracy in single-molecule microscopy.Biophysical Journal 86: 1185-1200 (2004).
- Patterson, G., Davidson, M., Manley, S. and Lippincott-Schwartz, J. Superresolution imaging using single-molecule localization. Annual Review of Physical Chemistry 61: 345-367 (2010).
- Ram, S., Ward, E. S. and Ober, R. J. A stochastic analysis of performance limits for optical microscopes. Multidimensional Systems and Signal Processing 17: 27-57 (2006).
- Rust, M. J., Bates, M. and Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods 3: 793-796 (2006).
- Saffarian, S. and Kirchhausen, T. Differential evanescence nanometry: Live-cell fluorescence measurements with 10-nm axial resolution on the plasma membrane.Biophysical Journal 94: 2333-2342 (2008).
- Sharonov, A. and Hochstrasser, R. M. Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proceedings of the National Academy of Sciences (USA) 103:18911-18916 (2006).
- Shroff, H., Galbraith, C. G., Galbraith, J. A., White, H., Gillette, J., Olenych, S., Davidson, M. W. and Betzig, E. Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proceedings of the National Academy of Sciences (USA)104: 20308-20313 (2007).
- Thompson, M. A., Biteen, J. S., Lord, S. J., Conley, N. R. and Moerner, W. E. Molecules and methods for super-resolution imaging. Methods in Enzymology 475: 27-59 (2010).
- Toprak, E. and Selvin, P. R. New fluorescent tools for watching nanometer-scale conformational changes of single molecules. Annual Review of Biophysics and Biomolecular Structure 36: 349-369 (2007).
- van de Linde, S., Endesfelder, U., Mukherjee, A., Schuttpelz, M., Wiebusch, G., Wolter, S., Heilemann, M. and Sauer, M. Multicolor photoswitching microscopy for subdiffraction-resolution fluorescence imaging. Photochemical and Photobiological Sciences 8: 465-469 (2009).
- Walter, N. G. Future of biomedical sciences: Single molecule microscopy. Biopolymers 85:103-105 (2007).
- Walter, N. G., Huang, C. Y., Manzo, A. J. and Sobhy, M. A. Do-it-yourself guide: How to use the modern single-molecule toolkit. Nature Methods 5: 475-489 (2008).
- Weiss, S. Fluorescence spectroscopy of single biomolecules. Science 283: 1676-1683 (1999).
- Xie, X. S., Choi, P. J., Li, G. W., Lee, N. K. and Lia, G. Single-molecule approach to molecular biology in living bacterial cells. Annual Review of Biophysics 37: 417-444 (2008).
- Yildiz, A. and Selvin, P. R. Fluorescence imaging with one nanometer accuracy: Application to molecular motors. Accounts of Chemical Research 38: 574-582 (2005).
- Ying, L. Single molecule biology: Coming of age. Molecular Biosystems 3: 377-380 (2007).
- Zhuang, X. Nano-imaging with STORM. Nature Photonics 3: 365-367 (2009).
Additional Literature Sources
- Abbondanzieri, E. A., Greenleaf, W. J., Shaevitz, J. W., Landick, R. and Block, S. M. Direct observation of baser-pair stepping by RNA polymerase. Nature 438: 460-465 (2005).
- Baddeley, D., Cannell, M. B. and Soeller, C. Visualization of localization microscopy data.Microscopy and Microanalysis 16: 64-72 (2010).
- Baddeley, D., Jayasinghe, I. D., Lam, L., Rossberger, S., Cannell, M. B. and Soeller, C. Optical single-channel resolution imaging of the ryanodine receptor distribution in rat cardiac myocytes. Proceedings of the National Academy of Sciences (USA) 106: 22275-22280 (2009).
- Baddeley, D., Weiland, Y., Batram, C., Birk, U. and Cremer, C. Model based precision structural measurements on barely resolved objects. Journal of Microscopy 237: 70-78 (2010).
- Balasubramanian, G., Chan, I. Y., Kolesov, R., Al-Hmoud, M., Tisler, J., Shin, C., Kim, C., Wojcik, A., Hemmer, P. R., Krueger, A., Hanke, T., Leitenstorfer, A., Bratschitsch, R., Jelezko, F. and Wrachtrup, J. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455: 648-651 (2008).
- Bancaud, A., Huet, S., Daigle, N., Mozziconacci, J., Beaudouin, J. and Ellenberg, J. Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin. The European Molecular Biology Organization Journal 28: 3785-3798 (2009).
- Biteen, J. S. and Moerner, W. E. Single-molecule and superresolution imaging in live bacteria cells. Cold Spring Harbor Laboratory Press 2: a00448-8 (2010).
- Blum, C. and Subramaniam, V. Single-molecule spectroscopy of fluorescent proteins.Analytical and Bioanalytical Chemistry 393: 527-541 (2009).
- Bobroff, N. Position measurement with a resolution and noise-limited instrument. Review of Scientific Instruments 57: 1152-1157 (1986).
- Bock, H., Geisler, C., Wurm, C. A., von Middendorff, C., Jakobs, S., Schonle, A., Egner, A., Hell, S. W. and Eggeling, C. Two-color far-field fluorescence nanoscopy based on photoswitchable emitters. Applied Physics B: Lasers and Optics 88: 161-165 (2007).
- Bornfleth, H., Edelmann, P., Zink, D., Cremer, T. and Cremer, C. Quantitative motion analysis of subchromosomal foci in living cells using four-dimensional microscopy. Biophysical Journal 77: 2871-2886 (1999).
- Boyer, D., Tamarat, P., Maali, A., Lounis, B. and Orrit, M. Photothermal imaging of nanometer-sized metal particles among scatterers. Science 297: 1160-1163 (2002).
- Brameshuber, M. and Shutz G. J. How the sum of its parts gets greater than the whole.Nature Methods 5: 133-134 (2008).
- Brandenburg, B. and Zhuang, X. Virus trafficking - learning from single-virus tracking.Nature Reviews Microbiology 5: 197-208 (2007).
- Burghardt, T. P., Li, J. and Ajtai, K. Single myosin lever arm orientation in a muscle fiber detected with photoactivatable GFP. Biochemistry 48: 754-765 (2009).
- Burns, D. H., Callis, J. B., Christian, G. D. and Davidson, E. R. Strategies for attaining super-resolution using spectroscopic data as constraints. Applied Optics 24: 154-161 (1985).
- Bystricky, K., Heun, P., Gehlen, L., Langowski, J. and Gasser, S. M. Long-range compaction and flexibility of interphase chromatin in budding yeast analyzed by high-resolution imaging techniques. Proceedings of the National Academy of Sciences (USA) 101: 16495-16500 (2004).
- Carrington, W. A., Lynch, R. M., Moore, E. D. W., Isenberg, G., Fogarty, K. E. and Fay, F. S.Superresolution three-dimensional images of fluorescence in cells with minimal light exposure. Science 268: 1483-1487 (1995).
- Casanova, D., Giaurne, D., Moreau, M., Martin, J., Gacoin, T., Boilot, J. and Alexandrou, A.Counting the number of proteins coupled to single nanoparticles. Journal of the American Chemical Society 129: 12592-12593 (2007).
- Chang, B., Pinaud, F., Antelman, J. and Weiss, S. Tracking bio-molecules in live cells using quantum dots. Journal of Biophotonics 1: 287-298 (2008).
- Cheezum, M. K., Walker, W. F. and Guilford, W. H. Quantitative comparison of algorithms for tracking single fluorescent particles. Biophysical Journal 81: 2378-2388 (2001).
- Chen, I. and Ting, A. Y. Site-specific labeling of proteins with small molecules in live cells.Current Opinion in Biotechnology 16: 35-40 (2005).
- Chiu, C., Huang, W., Wu, W. and Yang, T. Fluorescence single-molecule study of cobra phospholipase A2 action on a supported gel-phase lipid bilayer. ChemPhysChem 10: 549-558 (2009).
- Churchman, L. S., Okten, Z., Rock, R. S., Dawson, J. F. and Spudich, J. A. Single molecule high resolution colocalization of Cy3 and Cy5 attached to macromolecules measures intramolecular distances through time. Proceedings of the National Academy of Sciences (USA) 102: 1419-1423 (2005).
- Cianci, G. C., Wu, J. and Berland, K. M. Saturation modified point spread functions in two-photon microscopy. Microscopy Research and Technique 64: 135-141 (2004).
- Cognet, L., Tsyboulski, D. A. and Weisman, R. B. Subdiffraction far-field imaging of luminescent single-walled carbon nanotubes. Nano Letters 8: 749-753 (2008).
- Cronin, B., de Wet, B. and Wallace, M. I. Lucky imaging: Improved localization accuracy for single molecule imaging. Biophysical Journal 96: 2912-2917 (2009).
- Currie, L. A. Limits for qualitative detection and quantitative determination. Analytical Chemistry 40: 586-593 (1968).
- Dave, R., Terry, D. S., Munro, J. B. and Blanchard, S. C. Mitigating unwanted photophysical processes for improved single-molecule fluorescence imaging. Biophysical Journal 96:2371-2381 (2009).
- Dedecker, P., Muls, B., Deres, A., Uji-i, H., Sliwa, M., Soumillion, J. P., Mullen, K., Enderlein, J. and Hofkens, J. Defocused wide-field imaging unravels structural and temporal heterogeneity in complex systems. Advanced Materials 21: 1079-1090 (2009).
- Deerink, T. J. The application of fluorescent quantum dots to confocal, multiphoton, and electron microscopic imaging. Toxicologic Pathology 36: 112-116 (2008).
- Deng, Y. and Shaevitz, J. W. Effect of aberration on height calibration in three-dimensional localization-based microscopy and particle tracking. Applied Optics 48: 1886-1890 (2009).
- Deniz, A. A., Mukhopadhyay, S. and Lemke, E. A. Single-molecule biophysics: At the interface of biology, physics and chemistry. Journal of the Royal Society Interface 5: 15-45 (2008).
- Enderlein, J., Toprak, E. and Selvin, P. R. Polarization effect on position accuracy of fluorophore localization. Optics Express 14: 8111-8120 (2006).
- Endesfelder, U., van de Linde, S., Wolter, S., Sauer, M. and Heilemann, M. Subdiffraction-resolution fluorescence microscopy of myosin-actin motility. ChemPhysChem 11: 836-840 (2010).
- Ghosh, R. N. and Webb, W. W. Automated detection and tracking of individual and clustered cell surface low density lipoprotein receptor molecules. Biophysical Journal 66:1301-1318 (1994).
- Giannone, G., Hosy, E., Levet, F., Constals, A., Schulze, K., Sobolevsky, A. I., Rosconi, M. P., Gouaux, E., Tampe, R., Choquet, D. and Cognet, L. Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density. Biophysical Journal 99: 1303-1310 (2010).
- Gould, T. J., Gudheti, M. V., Zimmerberg, J. and Hess, S. T. Methods for quantification of lateral organization in biological membranes. Microscopy and Microanalysis 13: 12-13 (2007).
- Gould, T. J., Gunewardene, M. S., Gudheti, M. V., Verkhusha, V. V., Yin, S. R., Gosse, J. A. and Hess, S. T. Nanoscale imaging of molecular positions and anisotropies. Nature Methods 5:1027-1030 (2008).
- Greenfield, D., McEvoy, A. L., Shroff, H., Crooks, G. E., Wingreen, N. S., Betzig, E. and Liphardt, J. Self-organization of the Escherichia coli chemotaxis network imaged with super-resolution light microscopy. PLoS Biology 7: e-1000137-11 (2009).
- Guberman, J. M., Fay, A., Dworkin, J., Wingreen, N. S. and Gitai, Z. PSICIC: Noise and asymmetry in bacterial division revealed by computational image analysis at sub-pixel resolution. PLoS Computational Biology 4: e-1000233-10 (2008).
- Heiss, G., Lapiene, V., Kukolka, F., Niemeyer, C. M., Brauchle, C. and Lamb, D. C. Single-molecule investigations of a photoswitchable nanodevice. Small 5: 1169-1175 (2009).
- Hess, S. T., Gould, T. J., Gudheti, M. V., Maas, S. A., Mills, K. D. and Zimmerberg, J. Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories. Proceedings of the National Academy of Sciences (USA) 104: 17370-17375 (2007).
- Hoogenboom, J. P., Sanchez-Mosteiro, G., des Francs, G. C., Heinis, D., Legay, G., Dereux, A. and van Hulst, N. F. The single molecule probe: Nanoscale vectorial mapping of photonic mode density in a metal nanocavity. Nano Letters 9: 1189-1195 (2009).
- Huang, B., Jones, S. A., Brandenburg, B. and Zhuang, X. Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nature Methods5: 1047-1052 (2008).
- Huang, B., Wang, W., Bates, M. and Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319: 810-813 (2008).
- Johnston, L. J. Nanoscale imaging of domains in supported lipid membranes. Langmuir 23:5886-5895 (2007).
- Juette, M. F., Gould, T. J., Lessard, M. D., Mlodzianoski, M. J., Nagpure, B. S., Bennett, B. T., Hess, S. T. and Bewersdorf, J. Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples. Nature Methods 5: 527-529 (2008).
- Kao, H. P. and Verkman, A. S. Tracking of single fluorescent particles in three dimensions: Use of cylindrical optics to encode particle position. Biophysical Journal 67: 1291-1300 (1994).
- Kim, S. Y., Gitai, Z., Kinkhabwala, A., Shapiro, L. and Moerner, W. E. Single molecules of the bacterial actin MreB undergo directed treadmilling motion in Caulobacter crescentus.Proceedings of the National Academy of Sciences (USA) 103: 10929-10934 (2006).
- Knemeyer, J. P., Herten, D. P. and Sauer, M. Detection and identification of single molecules in living cells using spectrally resolved fluorescence lifetime imaging microscopy.Analytical Chemistry 75: 2147-2153 (2003).
- Kufer, S. K., Strackharn, M., Stahl, S. W., Gumpp, H., Puchner, E. M. and Gaub, H. E. Optically monitoring the mechanical assembly of single molecules. Nature Nanotechnology 4: 45-49 (2009).
- Kukura, P., Celebrano, M., Renn, A. and Sandoghdar, V. Imaging a single quantum dot when it is dark. Nano Letters 9: 926-929 (2009).
- Kukura, P., Ewers, H., Muller, C., Renn, A., Helenius, A. and Sandoghdar, V. High-speed nanoscopic tracking of the position and orientation of a single virus. Nature Methods 6:923-927 (2009).
- Kunik, D., Aramendia, P. F. and Martinez, O. E. Single photon fluorescent microlithography for live-cell imaging. Microscopy Research and Technique 73: 20-26 (2010).
- Kural, C., Kim, H., Syed, S., Goshima, G., Gelfand, V. I. and Selvin, P. R. Kinesin and dynein move a peroxisome in vivo: A tug-of-war or coordinated movement? Science 308: 1469-1472 (2005).
- Lang, T. and Rizzoli, S. O. Membrane protein clusters at nanoscale resolution: More than pretty pictures Physiology 25: 116-124 (2010).
- Lidke, K. A., Rieger, B., Jovin, T. M. and Heintzmann, R. Superresolution by localization of quantum dots using blinking statistics. Optics Express 13: 7052-7062 (2005).
- Lord, S. J., Conley, N. R., Lee, H. D., Samuel, R., Liu, N., Twieg, R. J. and Moerner, W. E. A photoactivatable push-pull fluorophore for single-molecule imaging in live cells. Journal of the American Chemical Society 130: 9204-9205 (2008).
- Lymperopoulos, K., Kiel, A., Seefeld, A., Stohr, K. and Herten, D. P. Fluorescent probes and delivery methods for single-molecule experiments. ChemPhysChem 11: 43-53 (2010).
- Manley, S., Gillette, J. M., Patterson, G. H., Shroff, H., Hess, H. F., Betzig, E. and Lippincott-Schwartz, J. High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nature Methods 5: 155-157 (2008).
- Meyer, P. and Dworkin, J. Applications of fluorescence microscopy to single bacterial cells.Research in Microbiology 158: 187-194 (2007).
- McKinney, S. A., Murphy, C. S., Hazelwood, K. L., Davidson, M. W. and Looger, L. L. A bright and photostable photoconvertible fluorescent protein. Nature Methods 6: 131-133 (2009).
- Michalet, X. and Weiss, S. Using photon statistics to boost microscopy resolution.Proceedings of the National Academy of Sciences (USA) 103: 4797-4798 (2006).
- Mitronova, G. Y., Belov, V. N., Bossi, M. L., Wurm, C. A., Meyer, L., Medda, R., Moneron, G., Bretschneider, S., Eggeling, C., Jakobs, S. and Hell, S. W. New fluorinated rhodamines for optical microscopy and nanoscopy. Chemistry-A European Journal 16: 4477-4488 (2010).
- Mizuno, H., Dedecker, P., Ando, R., Fukano, T., Hofkens, J. and Miyawaki, A. Higher resolution in localization microscopy by slower switching of a photochromic protein. Photochemical & Photobiological Sciences 9: 239-248 (2010).
- Mlodzianoski, M. J., Juette, M. F., Beane, G. L. and Bewersdorf, J. Experimental characterization of 3D localization techniques for particle-tracking and super-resolution microscopy. Optics Express 17: 8264-8277 (2009).
- Moerner, W. E. Optical detection and spectroscopy of single molecules in a solid. Physical Review Letters 62: 2535-2538 (1989).
- Mudrakola, H. V., Zhang, K. and Cui, B. Optically resolving individual microtubules in live axons. Structure 17: 1433-1441 (2009).
- Muzzey, D. and van Oudenaarden, A. Quantitative time-lapse fluorescence microscopy in single cells. Annual Review of Cell and Developmental Biology 25: 301-327 (2009).
- Naumov, A. V., Gorshelev, A. A., Vainer, Y. G., Kador, L. and Kohler, J. Far-Field Nanodiagnostics of Solids with Visible Light by Spectrally Selective Imaging. Angewandte Chemie International Edition 48: 9747-9750 (2009).
- Niu, L. and Yu, J. Investigating intracellular dynamics of FtsZ cytoskeleton with photoactivation single-molecule tracking. Biophysical Journal 95: 2009-2016 (2008).
- Orrit, M. From Langmuir-Blodgett films to single molecules. Colloids and Surfaces B: Biointerfaces 74: 396-400 (2009).
- Pavani, S. R. P., DeLuca, J. and Piestun, R. Polarization sensitive, three-dimensional, single-molecule imaging of cells with a double-helix system. Optics Express 17: 19644-19655 (2009).
- Pavani, S. R. P., Greengard, A. and Piestun, R. Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system.Applied Physics Letters 95: 021103 (2009).
- Pavani, S. R. P., Thompson, M. A., Biteen, J. S., Lord, S. J., Liu, N., Twieg, R. J., Piestun, R. and Moerner, W.E. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proceedings of the National Academy of Sciences (USA) 106: 2995-2999 (2009).
- Peters, R. Single-molecule fluorescence analysis of cellular nanomachinery components.Annual Review of Biophysics and Biomolecular Structure 36: 371-394 (2007).
- Peterson, E. M. and Harris, J. M. Quantitative detection of single molecules in fluorescence microscopy images. Analytical Chemistry 82: 189-196 (2010).
- Qian, H., Sheetz, M. P. and Elson, E. L. Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. Biophysical Journal 60: 910-921 (1991).
- Qu, X., Wu, D., Mets, L. and Scherer, N. F. Nanometer-localized multiple single-molecule fluorescence microscopy. Proceedings of the National Academy of Sciences (USA) 101:11298-11303 (2004).
- Ram, S., Prabhat, P., Ward, E. S. and Ober, R. J. Improved single particle localization accuracy with dual objective multifocal plane microscopy. Optics Express 17: 6881-6898 (2009).
- Ram, S., Ward, E. S. and Ober, R. J. Beyond Rayleigh's criterion: A resolution measure with application to single-molecule microscopy. Proceedings of the National Academy of Sciences (USA) 103: 4457-4462 (2006).
- Rocha, S., Hutchison, J. A., Peneva, K., Herrmann, A., Mullen, K., Skjot, M., Jorgenson, C. I., Svendsen, A., De Schryver, F. C., Hofkens, J. and Uji-i, H. Linking phospholipase mobility to activity by single-molecule wide-field microscopy. European Journal of Chemical Physics and Physical Chemistry 10: 151-161 (2009).
- Roeffaers, M. B. J., De Cremer, G., Uji-i, H., Muls, B., Sels, B. F., Jacobs, P. A., De Schryver, F. C., De Vos, D. E. and Hofkens, J. Single-molecule fluorescence spectroscopy in (bio)catalysis. Proceedings of the National Academy of Sciences (USA) 104: 12603-12609 (2007).
- Sauer, M. Reversible molecular photoswitches: A key technology for nanoscience and fluorescence imaging. Proceedings of the National Academy of Sciences (USA) 102: 9433-9434 (2005).
- Saxon, E. and Bertozzi, C. R. Cell surface engineering by a modified Staudinger reaction.Science 17: 2007-2010 (2000).
- Scherer, N. F. Imaging: Pointillist microscopy. Nature Nanotechnology 1: 19-20 (2006).
- Schmidt, T., Schutz, G. J., Baumgartner, W., Gruber, H. J. and Schindler, H. Imaging of single molecule diffusion. Proceedings of the National Academy of Science 93: 2926-2929 (1996).
- Schuttpelz, M., Wolter, S., van de Linde, S., Heilemann, M. and Sauer, M. dSTORM: Real-time subdiffraction-resolution fluorescence imaging with organic fluorophores. Proceedings of SPIE 7571: 75710V-12 (2010).
- Shtengel, G., Galbraith, J. A., Galbraith, C. G., Lippincott-Schwartz, J., Gillette, J. M., Manley, S., Sougrat, R., Waterman, C. M., Kanchanawong, P., Davidson, M. W., Fetter, R. D. and Hess, H. F.Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proceedings of the National Academy of Sciences (USA) 106: 3125-3130 (2009).
- Small, A. R. Theoretical limits on errors and acquisition rates in localizing switchable fluorophores. Biophysical Journal 96: L16-L18 (2009).
- Speidel, M., Jonas, A. and Florin, E. L. Three-dimensional tracking of fluorescent nanoparticles with subnanometer precision by use of off-focus imaging. Optics Letters28: 69-71 (2003).
- Subach, F. V., Patterson, G. H., Manley, S., Gillette, J. M., Lippincott-Schwartz, J. and Verkhusha, V. V. Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. Nature Methods 6: 153-159 (2009).
- Sun, Y., McKenna, J. D., Murray, J. M., Ostap, E. M. and Goldman, Y. E. Parallax: High accuracy three-dimensional single molecule tracking using split images. Nano Letters 9:2676-2682 (2009).
- Sun, Y., Sato, O., Ruhnow, F., Arsenault, M. E., Ikebe, M. and Goldman, Y. E. Single-molecule stepping and structural dynamics of myosin X. Nature Structural and Molecular Biology17: 485-491 (2010).
- Syed, S., Snyder, G. E., Franzini-Armstrong, C., Selvin, P. R. and Goldman, Y. E. Adaptability of myosin V studied by simultaneous detection of position and orientation. The EMBO Journal 25: 1795-1803 (2006).
- Tachikawa, T. and Majima, T. Single-molecule fluorescence imaging of TIO2 photocatalytic reactions. Langmuir 25: 7791-7802 (2009).
- Tang, J. Random on-off telegraphic signaling in single nanoparticles and molecules. Nano Reviews 1: 5031-2 (2010).
- Tang, J., Akerboom, J., Vaziri, A., Looger, L. L. and Shank, C. V. Near-isotropic 3D optical nanoscopy with photon-limited chromophores. Proceedings of the National Academy of Sciences (USA) 107: 10068-10073 (2010).
- Tatavarty, V., Kim, E., Rodionov, V. and Yu, J. Investigating sub-spine actin dynamics in rat hippocampal neurons with super-resolution optical imaging. PLoS ONE 4: e7724-9 (2009).
- Testa, I., Parazzoli, D., Barozzi, S., Garre, M., Faretta, M. and Diaspro, A. Spatial control of pa-GFP photoactivation in living cells. Journal of Microscopy 230: 48-60 (2008).
- Thompson, R. E., Larson, D. R. and Webb, W. W. Precise nanometer localization analysis for individual fluorescent probes. Biophysical Journal 82: 2775-2783 (2002).
- Thompson, R. E., Lew, M. D., Badieirostami, M. and Moerner, W. E. Localizing and tracking single nanoscale emitters in three dimensions with high spatiotemporal resolution using a double-helix point spread function. Nano Letters 10: 211-218 (2010).
- Toprak, E., Balci, H., Blehm, B. H. and Selvin, P. R. Three-dimensional particle tracking via bifocal imaging. Nano Letters 7: 2043-2045 (2007).
- Triller, A. and Choquet, D. New concepts in synaptic biology derived from single-molecule imaging. Neuron 59: 359-374 (2008).
- Vale, R. D. Microscopes for fluorimeters: the era of single molecule measurements. Cell135: 779-785 (2008).
- van de Linde, S., Kasper, R., Heilemann, M. and Sauer, M. Photoswitching microscopy with standard fluorophores. Applied Physics B 93: 725-731 (2008).
- van de Linde, S., Sauer, M. and Heilemann, M. Subdiffraction-resolution fluorescence imaging of proteins in the mitochondrial inner membrane with photoswitchable fluorophores. Journal of Structural Biology 164: 250-254 (2008).
- van de Linde, S., Wolter, S., Heilemann, M. and Sauer, M. The effect of photoswitching kinetics and labeling densities on super-resolution fluorescence imaging. Journal of Biotechnology 149: 260-266 (2010).
- van Oijen, A. M., Kohler, J., Schmidt, J., Muller, M. and Brakenhoff, G. J. 3-Dimensional super-resolution by spectrally selective imaging. Chemical Physics Letters 292: 183-187 (1998).
- van Oijen, A. M., Kohler, J.,Schmidt, J., Muller, M. and Brakenhoff, G. J. Far-field fluorescence microscopy beyond the diffraction limit. Journal of the Optical Society of America A 16:909-915 (1999).
- Vogelsang, J., Cordes, T., Forthmann, C., Steinhauer, C. and Tinnefeld, P. Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy. Proceedings of the National Academy of Sciences (USA) 106: 8107-8112 (2009).
- Vogelsang, J., Cordes, T., Forthmann, C., Steinhauer, C. and Tinnefeld, P. Intrinsically resolution enhancing probes for confocal microscopy. Nano Letters 10: 672-679 (2010).
- Vukojevic, V., Heidkamp, M., Ming, Y., Johansson, B., Terenius, L. and Rigler, R. Quantitative single-molecule imaging by confocal laser scanning microscopy. Proceedings of the National Academy of Sciences (USA) 105: 18176-18181 (2008).
- Walser, A., Zumofen, G., Renn, A., Gotzinger, S. and Sandoghdar, V. Spectral dynamics and spatial localization of single molecules in a polymer. Molecular Physics 107: 1897-1909 (2009).
- Wang, Z., Tiruppathi, C., Minshall, R. D. and Malik, A. B. Size and dynamics of caveolae studied using nanoparticles in living endothelial cells. American Chemical Society Nano3: 4110-4116 (2009).
- Westphal, V. and Hell, S. W. Nanoscale resolution in the focal plane of an optical microscope. Physical Review Letters 94: 143903-4 (2005).
- Widengren, J. Fluorescence-based transient state monitoring for biomolecular spectroscopy and imaging. Journal of the Royal Society Interface 7: 1135-1144 (2010).
- Wieser, S., Moertelmaier, M., Fuetbauer, E., Stockinger, H. and Schutz, G. J. (Un)confined diffusion of CD59 in the plasma membrane determined by high-resolution single molecule microscopy. Biophysical Journal 92: 3719-3728 (2007).
- Wieser, S., Schutz, G. J., Cooper, M. E. and Stockinger, H. Single molecule diffusion analysis on cellular nanotubules: Implications on plasma membrane structure below the diffraction limit. Applied Physics Letters 91: 233901-3 (2007).
- Wolter, S., Schuttpelz, M., Tscherepanow, M., van de Linde, S., Heilemann, M. and Sauer, M.Real-time computation of subdiffraction-resolution fluorescence images. Journal of Microscopy 237: 12-22 (2010).
- Xu, Q., Tucker, M. P., Arenkiel, P., Ai, X., Rumbles, G., Sugiyama, J., Himmel, M. E. and Ding, S. Y. Labeling the planar face of crystalline cellulose using quantum dots directed by type-I carbohydrate-binding modules. Cellulose 16: 19-26 (2009).
- Xu, W., Shen, H., Kim, Y. J., Zhou, X., Liu, G., Park, J. and Chen, P. Single-molecule electrocatalysis by single-walled carbon nanotubes. Nano Letters 9: 3968-3973 (2009).
- von Middendorff, C., Egner, A., Geisler, C., Hell, S. W. and Schonle, A. Isotropic 3D nanoscopy based on single emitter switching. Optics Express 16: 20774-20788 (2008).
- Ye, F., Collinson, M. M. and Higgins, D. A. What can be learned from single molecule spectroscopy? Applications to sol-gel-derived silica materials. Physical Chemistry Chemical Physics 11: 66-82 (2009).
- Yildiz, A., Forkey, J. N., Mckinney, S. A., Ha, T., Goldman, Y. E. and Selvin, P. R. Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization. Science 300:2061-2065 (2003).
- Yildiz, A., Park, H., Safer, D. , Yang, Z., Chen, L. Q., Selvin, P. R. and Sweeney, H. L. Myosin VI steps via a hand-over-hand mechanism with its lever arm undergoing fluctuations when attached to actin. The Journal of Biological Chemistry 279: 37223-37226 (2004).
- Zondervan, R., Kulzer, F., Orlinskii, S. B. and Orrit, M. Photoblinking of rhodamine 6G in poly(vinyl alcohol): Radical dark state formed through the triplet. Journal of Physical Chemistry A 107: 6770-6776 (2003).