Standing Wave Superresolution Microscopy Literature References
Standing wave microscopy employs opposed objectives coupled with axially structured illumination to spatially modulate the excitation light in a traditional widefield fluorescence microscope configuration. In this technique, the exciation illumination is composed of two counter-propagating, non-focused laser beams that interfere with each other to form a standing wave, and thus create a sinusoidal excitation field in the axial dimension.
Recommended Literature
- Bailey, B., Farkas, D. L., Lansing Taylor, D. and Lanni, F. Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation. Nature 366: 44-48 (1993).
- Bewersdorf, J., Schmidt, R. and Hell, S. W. Comparison of I5M and 4Pi-microscopy. Journal of Microscopy 222: 105-117 (2006).
- Chung, E., Kim, D., Cui, Y., Kim, Y. H. and So, P. T. C. Two-dimensional standing wave total internal reflection fluorescence microscopy: Superresolution imaging of single molecular and biological specimens. Biophysical Journal 93: 1747-1757 (2007).
- Egner, A. and Hell, S. W. Fluorescence microscopy with super-resolved optical sections.Trends in Cell Biology 15: 207-215 (2005).
- Gustafsson, M. G. L. Extended resolution fluorescence microscopy. Current Opinion in Structural Biology 9: 627-628 (1999).
- Gustafsson, M. G. L., Agard, D. A. and Sedat, J. W. Sevenfold improvement of axial resolution in 3D wide-field microscopy using two objective lenses. Proceedings of SPIE2412: 147-155 (1995).
- Gustafsson, M. G. L., Agard, D. A. and Sedat, J. W. I5M: 3D widefield light microscopy with better than 100 nm axial resolution. Journal of Microscopy 195: 10-16 (1999).
- Nagorni, M. and Hell, S. W. Coherent use of opposing lenses for axial resolution increase in fluorescence microscopy. I. Comparative study of concepts. Journal of the Optical Society of America A 18: 36-48 (2001).
- Shao, L., Isaac, B., Uzawa, S., Agard, D. A., Sedat, J. W. and Gustafsson, M. G. L. I5S: Wide-field light microscopy with 100-nm-scale resolution in three dimensions. Biophysical Journal 94: 4971-4983 (2008).
Additional Literature Sources
- Chung, E., Kim, D. and So, P. T. C. Extended resolution wide-field optical imaging: Objective-launched standing-wave total internal reflection fluorescence microscopy.Optics Letters 31: 945-947 (2006).
- Cragg, G. E. and So, P. T. C. Lateral resolution enhancement with standing evanescent waves. Optics Letters 25: 46-48 (2000).
- Freimann, R., Pentz, S. and Horler, H. Development of a standing-wave fluorescence microscope with high nodal plane flatness. Journal of Microscopy 187: 193-200 (1997).
- Krishnamurthi, V., Bailey, B. and Lanni, F. Image processing in 3D standing-wave fluorescence microscopy. Proceedings of SPIE 2655: 18-25 (1996).
- Lee, S. and Gweon, D. Improvement of the axial resolution in confocal microscopy by the use of heterodyne interference. Measurement and Science Technology 19: 105502-9 (2008).
- Lenne, P. F., Rigneault, H., Marguet, D. and Wenger, J. Fluorescence fluctuations analysis in nanoapertures: Physical concepts and biological applications. Histochemistry and Cell Biology 130: 795-805 (2008).
- So, P. T. C., Kwon, H. S. and Dong, C. Y. Resolution enhancement in standing-wave total internal reflection microscopy: A point-spread-function engineering approach. Journal of the Optical Society of America A 18: 2833-2845 (2001).