Superresolution Microscopy Review Articles
Over the past several years, a number of novel single-molecule and more complex instrument-based approaches have been employed to circumvent the diffraction limit, including photoactivated localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), near-field scanning optical microscopy (NSOM), stimulated emission depletion microscopy (STED), saturated structured-illumination microscopy (SSIM), and ground state depletion (GSD) microscopy. In addition, numerous other approaches have been used to achieve better resolution than can be obtained with traditional optical microscopy imaging methodology. These techniques have all achieved improved lateral (x-y) resolution down to tens of nanometers, more than an order of magnitude beneath that imposed by the diffraction limit, but each method has a unique set of limitations.
Recommended Literature
- Bates, M., Huang, B. and Zhuang, X. Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes. Current Opinion in Chemical Biology 12: 505-514 (2008).
- Dedecker, P., Flors, C., Hotta, J. I., Uji-i, H. and Hofkens, J. 3D nanoscopy: Bringing biological nanostructures into sharp focus. Angewandte Chemie International Edition 46: 8330-8332 (2007).
- Egner, A. and Hell, S. W. Fluorescence microscopy with super-resolved optical sections.Trends in Cell Biology 15: 207-215 (2005).
- Garini, Y., Vermolen, B. J. and Young, I. T. From micro to nano: Recent advances in high-resolution microscopy. Current Opinion in Biotechnology 16: 3-12 (2005).
- Giepmans, B. N. G., Adams, S. R., Ellisman, M. H. and Tsien, R. Y. The fluorescent toolbox for assessing protein location and function. Science 312: 217-224 (2006).
- Gould, T. J. and Hess, S. T. Nanoscale biological fluorescence imaging: Breaking the diffraction barrier. Methods in Cell Biology 89: 329-358 (2008).
- Gustafsson, M. G. L. Extended resolution fluorescence microscopy. Current Opinion in Structural Biology 9: 627-628 (1999).
- Heilemann, M. Fluorescence microscopy beyond the diffraction limit. Journal of Biotechnology 149: 243-251 (2010).
- Heilemann, M., Dedecker, P., Hofkens, J. and Sauer, M. Photoswitches: Key molecules for subdiffraction-resolution fluorescence imaging and molecular quantification. Laser and Photonics Reviews 3: 180-202 (2009).
- Heintzmann, R. and Ficz, G. Breaking the resolution limit in light microscopy. Briefings in Functional Genomics and Proteomics 5: 289-301 (2006).
- Heintzmann, R. and Gustafsson, M. G. L. Subdiffraction resolution in continuous samples.Nature Photonics 3: 362-364 (2009).
- Hell, S. W. Increasing the resolution of far-field fluorescence light microscopy by point-spread-function engineering. Topics in Fluorescence Spectroscopy 5: 361-426 (2002).
- Hell, S. W. Toward fluorescence nanoscopy. Nature Biotechnology 21: 1347-1355 (2003).
- Hell, S. W. Far-field optical nanoscopy. Science 316: 1153-1158 (2007).
- Hell, S. W. Microscopy and its focal switch. Nature Methods 6: 24-32 (2009).
- Hell, S. W. Far-field optical nanoscopy. Springer Series in Chemical Physics 96: 365-398 (2010).
- Hell, S. W., Schmidt, R. and Egner, A. Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses. Nature Photonics 3: 381-387 (2009).
- Henriques, R. and Mhlanga, M. M. PALM and STORM: What hides beyond the Rayleigh limit? Biotechnology Journal 4: 846-857 (2009).
- Hess, S. T., Gould, T. J., Gunewardene, M., Bewersdorf, J. and Mason, M. D. Ultrahigh resolution imaging of biomolecules by fluorescence photoactivation localization microscopy. Methods in Molecular Biology 544: 483-522 (2009).
- Hu, D. and Orr, G. Nanometer resolution imaging by single molecule switching. Nano Reviews 1: 5122-5123 (2010).
- Huang, B. Super-resolution optical microscopy: Multiple choices. Current Opinion in Chemical Biology 14: 10-14 (2010).
- Huang, B., Bates, M. and Zhuang, X. Super-resolution fluorescence microscopy. Annual Review of Biochemistry 78: 993-1016 (2009).
- Huisken, J. and Stainier, D. Y. R. Selective plane illumination microscopy techniques in developmental biology. Development 136: 1963-1975 (2009).
- Ji, N., Shroff, H., Zhong, H. and Betzig, E. Advances in the speed and resolution of light microscopy. Current Opinion in Neurobiology 18: 605-616 (2008).
- Lippincott-Schwartz, J. and Manley, S. Putting super-resolution fluorescence microscopy to work. Nature Methods 6: 21-23 (2009).
- Manley, S., Gillette, J. M. and Lippincott-Schwartz, J. Single-particle tracking photoactivated localization microscopy for mapping single-molecule dynamics. Methods in Enzymology475: 109-120 (2010).
- Moerner, W. E. A dozen years of single-molecule spectroscopy in physics, chemistry, and biophysics. Journal of Physical Chemistry B 106: 910-927 (2002).
- Patterson, G., Davidson, M., Manley, S. and Lippincott-Schwartz, J. Superresolution imaging using single-molecule localization. Annual Review of Physical Chemistry 61: 345-367 (2010).
- Schermelleh, L., Heintzmann, R. and Leonhardt, H. A guide to super-resolution fluorescence microscopy. Journal of Cell Biology 190: 165-175 (2010).
- Thompson, R. E., Biteen, J. S., Lord, S. J., Conley, N. R. and Moerner, W. E. Molecules and methods for super-resolution imaging. Methods in Enzymology 475: 27-59 (2010).
- Wells, W. A. Man the nanoscopes. Journal of Cell Biology 164: 337-340 (2004).
- Willis, R. C. Portraits of life, one molecule at a time. Analytical Chemistry 79: 1785-1788 (2007).
- Yildiz, A. and Selvin, P. R. Fluorescence imaging with one nanometer accuracy: Application to molecular motors. Accounts of Chemical Research 38: 574-582 (2005).
- Zhuang, X. Nano-imaging with STORM. Nature Photonics 3: 365-367 (2009).
Additional Literature Sources
- Alcor, D., Gouzer, G. and Triller, A. Single-particle tracking methods for the study of membrane receptors dynamics. European Journal of Neuroscience 30: 987-997 (2009).
- Arenkiel, B. R. and Ehlers, M. D. Molecular genetics and imaging technologies for circuit-based neuroanatomy. Nature 461: 900-907 (2009).
- Bennett, B. T., Bewersdorf, J. and Knight, K. L. Immunofluorescence imaging of DNA damage response proteins: Optimizing protocols for super-resolution microscopy. Methods 48: 63-71 (2009).
- Biteen, J. S. and Moerner, W. E. Single-molecule and superresolution imaging in live bacteria cells. Cold Spring Harbor Laboratory Press 2: a000448-8 (2010).
- Blow, N. Cell imaging: New ways to see a smaller world. Nature 456: 825-828 (2008).
- Brameshuber, M. and Shutz, G. J. How the sum of its parts gets greater than the whole.Nature Methods 5: 133-134 (2008).
- Bullen, A. Microscopic imaging techniques for drug discovery. Nature Reviews Drug Discovery 7: 54-67 (2008).
- Chi, K. R. Microscopy: Ever-increasing resolution. Nature 462: 675-678 (2009).
- Chi, K. R. Super-resolution microscopy: Breaking the limits. Nature Methods 6: 15-18 (2009).
- Couzin, J. New optics strategies cut through diffraction barrier. Science 313: 748-749 (2006).
- Davis, I. The 'super-resolution' revolution. Biochemical Society Transactions 37: 1042-1044 (2009).
- Dedecker, P., Hofkens, J. and Hotta, J. I. Diffraction-unlimited optical microscopy. Materials Today 11: 12-21 (2008).
- Deniz, A. A., Mukhopadhyay, S. and Lemke, E. A. Single-molecule biophysics: At the interface of biology, physics and chemistry. Journal of the Royal Society Interface 5: 15-45 (2008).
- de Souza, N. New twists on photoswitchable proteins. Nature Methods 5: 858-859 (2008).
- Doose, S. Trends in biological optical microscopy. ChemPhysChem 9: 523-528 (2008).
- Egner, A., Andresen, V. and Hell, S. W. Comparison of the axial resolution of practical Nipkow-disk confocal fluorescence microscopy with that of multifocal multiphoton microscopy: Theory and experiment. Journal of Microscopy 206: 24-32 (2002).
- Evanko, D. STEDy progress. Nature Methods 3: 661 (2006).
- Evanko, D. Seeing fluorescence at super-resolution. Nature Methods 5: 22 (2008).
- Evanko, D. Primer: Fluorescence imaging under the diffraction limit. Nature Methods 6: 19-20 (2009).
- Gitai, Z. New fluorescence microscopy methods for microbiology: Sharper, faster, and quantitative. Current Opinion in Microbiology 12: 341-346 (2009).
- Glory, E. and Murphy, R. F. Automated subcellular location determination and high-throughput microscopy. Developmental Cell 12: 7-16 (2007).
- Gould, T. J., Verkhusha, V. V. and Hess, S. T. Imaging biological structures with fluorescence photoactivation localization microscopy. Nature Protocols 4: 291-308 (2009).
- Graydon, O. Beyond the diffraction limit. Nature Photonics 3: 361 (2009).
- Groves, J. T., Parthasarathy, R. and Forstner, M. B. Fluorescence imaging of membrane dynamics. Annual Review of Biomedical Engineering 10: 311-338 (2008).
- Gustafsson, M. G. L. Super-resolution light microscopy goes live. Nature Methods 5: 385-387 (2008).
- Haustein, E. and Schwille, P. Trends in fluorescence imaging and related techniques to unravel biological information. HFSP Journal 1: 169-180 (2007).
- Hell, S. W., Dyba, M. and Jakobs, S. Concepts for nanoscale resolution in fluorescence microscopy. Current Opinion in Neurobiology 14: 599-609 (2004).
- Huser, T. Nano-biophotonics: New tools for chemical nano-analytics. Current Opinion in Chemical Biology 12: 497-504 (2008).
- Ilev, I. K. Breaking the optical diffraction barrier with nanophotonics Ultrahigh-resolution bioimaging and biosensing in the subwavelength nanometric range with nanobiophotonic technologies. IEEE Circuits and Devices Magazine 22: 60-65 (2006).
- Kaksonen, M. and Drubin, D. G. PALM Reading: Seeing the future of cell biology at higher resolution. Developmental Cell 11: 438-439 (2006).
- Lang, T. and Rizzoli, S. O. Membrane protein clusters at nanoscale resolution: More than pretty pictures. Physiology 25: 116-124 (2010).
- Langhorst, M. F., Schaffer, J. and Goetze, B. Structure brings clarity: Structured illumination microscopy in cell biology. Biotechnology Journal 4: 858-865 (2009).
- Lichtman, J. W. and Smith, S. J. Seeing circuits assemble. Neuron 60: 441-448 (2008).
- Lidke, D. S. and Wilson, B. S. Caught in the act: Quantifying protein behaviour in living cells. Trends in Cell Biology 19: 566-574 (2009).
- Lippincott-Schwartz, J. and Patterson, G. H. Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging. Trends in Cell Biology 19: 555-565 (2009).
- Lord, S. J., Lee, H. D. and Moerner, W. E. Single-molecule spectroscopy and imaging of biomolecules in living cells. Analytical Chemistry 82: 2192-2203 (2010).
- Lymperopoulos, K., Kiel, A., Seefeld, A., Stohr, K. and Herten, D. Fluorescent probes and delivery methods for single-molecule experiments. ChemPhysChem 11: 43-53 (2010).
- Michalet, X., Lacoste, T. D. and Weiss, S. Ultrahigh-resolution colocalization of spectrally separable point-like fluorescent probes. Methods 25: 87-102 (2001).
- Moerner, W. E. Single-molecule mountains yield nanoscale cell images. Nature Methods 3:781-782 (2006).
- Moerner, W. E. New directions in single-molecule imaging and analysis. Proceedings of the National Academy of Sciences (USA) 104: 12596-12602 (2007).
- Muzzey, D. and van Oudenaarden, A. Quantitative time-lapse fluorescence microscopy in single cells. Annual Review of Cell and Developmental Biology 25: 301-327 (2009).
- Patterson, G. H. Fluorescence microscopy below the diffraction limit. Seminars in Cell and Developmental Biology 20: 886-893 (2009).
- Patterson, G. H., Betzig, E., Lippincott-Schwartz, J. and Hess, H. F. Developing Photoactivated Localization Microscopy (PALM). 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro: 940-943 (2007).
- Peng, W. PALM reading. Nature Methods 6: 243 (2009).
- Peters, R. Single-molecule fluorescence analysis of cellular nanomachinery components.Annual Review of Biophysics and Biomolecular Structure 36: 371-394 (2007).
- Pinaud, F. and Dahan, M. Zooming into live cells. Science 320: 187-188 (2008).
- Rice, J. H. Beyond the diffraction limit: Far-field fluorescence imaging with ultrahigh resolution. Molecular Biosystems 3: 781-793 (2007).
- Ringemann, C., Harke, B., von Middendorff, C., Medda, R., Honigmann, A., Wagner, R., Leutenegger, M., Schonle, A., Hell, S. W. and Eggeling, C. Exploring single-molecule dynamics with fluorescence nanoscopy. New Journal of Physics 11: 103054 (2009).
- Scherer, N. F. Imaging: Pointillist microscopy. Nature Nanotechnology 1: 19-20 (2006).
- Schonle, A. and Hell, S. W. Fluorescence nanoscopy goes multicolor. Nature Biotechnology25: 1234-1235 (2007).
- Schwentker, M. A., Bock, H., Hofmann, M., Jakobs, S., Bewersdorf, J., Eggeling, C. and Hell, S. W. Wide-field subdiffraction RESOLFT microscopy using fluorescent protein photoswitching. Microscopy Research and Technique 70: 269-280 (2007).
- Shaevitz, J. W. Super-resolution for a 3D world. Nature Methods 5: 471-472 (2008).
- Simpson, G. J. Biological imaging: The diffraction barrier broken. Nature 440: 879-880 (2006).
- Smolyaninov, I. I. Optical microscopy beyond the diffraction limit. HFSP Journal 2: 129-131 (2008).
- Stemmer, A., Beck, M. and Fiolka, R. Widefield fluorescence microscopy with extended resolution. Histochemistry and Cell Biology 130: 807-817 (2008).
- Toprak, E. and Selvin, P. R. New fluorescent tools for watching nanometer-scale conformational changes of single molecules. Annual Review of Biophysics and Biomolecular Structure 36: 349-369 (2007).
- Verveer, P. J. and Bastiaens, P. I. H. Quantitative microscopy and systems biology: Seeing the whole picture. Histochemistry and Cell Biology 130: 833-843 (2008).
- von Middendorff, C., Egner, A., Geisler, C., Hell, S. W. and Schonle, A. Isotropic 3D Nanoscopy based on single emitter switching. Optics Express 16: 20774-20788 (2008).
- Walter, N. G., Huang, C., Manzo, A. J. and Sobhy, M. A. Do-it-yourself guide: How to use the modern single-molecule toolkit. Nature Methods 5: 475-489 (2008).
- Weiss, S. Fluorescence spectroscopy of single biomolecules. Science 283: 1676-1683 (1999).
- Weiss, S. Shattering the diffraction limit of light: A revolution in fluorescence microscopy?Proceedings of the National Academy of Sciences (USA) 97: 8747-8749 (2000).
- Wilt, B. A., Burns, L. D., Wei Ho, E. T., Ghosh, K. K., Mukamel, E. A. and Schnitzer, M. J. Advances in light microscopy for neuroscience. Annual Review of Neuroscience 32: 435-506 (2009).
- Won, R. Eyes on super-resolution. Nature Photonics 3: 368-369 (2009).
- Wouters, F. S. The physics and biology of fluorescence microscopy in the life sciences.Contemporary Physics 47: 239-255 (2006).
- Zenobi, R. Analytical tools for the nano world. Analytical and Bioanalytical Chemistry 390:215-221 (2008).
- Zerhouni, E. A. Major trends in the imaging sciences. Radiology 249: 403-409 (2008).