Superresolution Localization Accuracy Literature References
A number of factors must be considered when attempting to accurately localize single molecules for superresolution microscopy. Among the critical elements for successful imaging are molecular density (the degree of labeling), background signal, autofluorescence, number of photons gathered by the detector, and stage drift. These and other topics are addressed in the reference materials provided in this section.
Recommended Literature
- Bobroff, N. Position measurement with a resolution and noise-limited instrument. Review of Scientific Instruments 57: 1152-1157 (1986).
- Cheezum, M. K., Walker, W. F. and Guilford, W. H. Quantitative comparison of algorithms for tracking single fluorescent particles. Biophysical Journal 81: 2378-2388 (2001).
- Churchman, L. S., Okten, Z., Rock, R. S., Dawson, J. F. and Spudich, J. A. Single molecule high-resolution colocalization of Cy3 and Cy5 attached to macromolecules measures intramolecular distances through time. Proceedings of the National Academy of Sciences (USA) 102: 1419-1423 (2005).
- Cronin, B., de Wet, B. and Wallace, M. I. Lucky imaging: Improved localization accuracy for single molecule imaging. Biophysical Journal 96: 2912-2917 (2009).
- Gordon, M. P., Ha, T. and Selvin, P. R. Single-molecule high-resolution imaging with photobleaching. Proceedings of the National Academy of Sciences (USA) 101: 6462-6465 (2004).
- Gould, T. J., Gunewardene, M. S., Gudheti, M. V., Verkhusha, V. V., Yin, S. R., Gosse, J. A. and Hess, S. T. Nanoscale imaging of molecular positions and anisotropies. Nature Methods 5:1027-1030 (2008).
- Michalet, X. and Weiss, S. Using photon statistics to boost microscopy resolution.Proceedings of the National Academy of Sciences (USA) 103: 4797-4798 (2006).
- Ober, R. J., Ram, S. and Ward, E. S. Localization accuracy in single-molecule microscopy.Biophysical Journal 86: 1185-1200 (2004).
- Qu, X., Wu, D., Mets, L. and Scherer, N. F. Nanometer-localized multiple single-molecule fluorescence microscopy. Proceedings of the National Academy of Sciences (USA) 101:11298-11303 (2004).
- Small, A. R. Theoretical limits on errors and acquisition rates in localizing switchable fluorophores. Biophysical Journal 96: L16-L18 (2009).
- Thompson, M. A., Biteen, J. S., Lord, S. J., Conley, N. R. and Moerner, W. E. Molecules and methods for super-resolution imaging. Methods in Enzymology 475: 27-59 (2010).
- Thompson, R. E., Larson, D. R. and Webb, W. W. Precise nanometer localization analysis for individual fluorescent probes. Biophysical Journal 82: 2775-2783 (2002).
- Yildiz, A. and Selvin, P. R. Fluorescence imaging with one nanometer accuracy: Application to molecular motors. Accounts of Chemical Research. 38: 574-582 (2005).
Additional Literature Sources
- Abraham, A. V., Ram, S., Chao, J., Ward, E. S. and Ober, R. J. Quantitive study of single molecule location estimation techniques. Optics Express 17: 23352-23373 (2009).
- Aguet, F., Geissbuhler, S., Marki, I., Lasser, T. and Unser, M. Super-resolution orientation estimation and localization of fluorescent dipoles using 3-D steerable filters. Optics Express 17: 6829-6848 (2009).
- Carrington, W. A., Lynch, R. M., Moore, E. D., Isenberg, G., Fogarty, K. E. and Fay, F. S.Superresolution three-dimensional images of fluorescence in cells with minimal light exposure. Science 268: 1483-1487 (1995).
- Cianci G. C., Wu, J. and Berland, K. M. Saturation modified point spread functions in two-photon microscopy. Microscopy Research and Technique 64: 135-141 (2004).
- Currie, L. A. Limits for qualitative detection and quantitative determination. Analytical Chemistry 40: 586-593 (1968).
- Dave, R., Terry, D. S. Munro, J. B. and Blanchard, S. C. Mitigating unwanted photophysical processes for improved single-molecule fluorescence imaging. Biophysical Journal 96:2371-2381 (2009).
- Deng, Y. and Shaevitz, J. W. Effect of aberration on height calibration in three-dimensional localization-based microscopy and particle tracking. Applied Optics 48: 1886-1890 (2009).
- Enderlein, J., Toprak, E. and Selvin, P. R. Polarization effect on position accuracy of fluorophore localization. Optics Express 14: 8111-8120 (2006).
- Gelles, J., Schnapp, B. J. and Sheetz, M. P. Tracking kinesin-driven movements with nanometre-scale precision. Nature 331: 450-453 (1988).
- Gould, T. J., Gudheti, M. V., Zimmerberg, J. and Hess, S. T. Methods for quantification of lateral organization in biological membranes. Microscopy and Microanalysis 13: 12-13 (2007).
- Guberman, J. M., Fay, A., Dworkin, J., Wingreen, N. S. and Gitai, Z. PSICIC: Noise and asymmetry in bacterial division revealed by computational image analysis at sub-pixel resolution. PLoS Computational Biology 4: e1000233-10 (2008).
- Lidke, K., Rieger, B., Jovin, T. and Heintzmann, R. Superresolution by localization of quantum dots using blinking statistics. Optics Express 13: 7052-7062 (2005).
- Peterson, E. M. and Harris, J. M. Quantitative detection of single molecules in fluorescence microscopy images. Analytical Chemistry 82: 189-196 (2010).
- Ram, S., Ward, E. S. and Ober, R. J. Beyond Rayleigh's criterion: A resolution measure with application to single-molecule microscopy. Proceedings of the National Academy of Sciences (USA) 103: 4457-4462 (2006).
- Schmidt, T., Schutz, G. J., Baumgartner, W., Gruber, H. J. and Schindler, H. Imaging of single molecule diffusion. Proceedings of the National Academy of Sciences (USA) 93: 2926-2929 (1996).
- Wolter, S., Schuttpelz, M., Tescherepanow, M., van de Linde, S., Heilemann, M. and Sauer, M.Real-time computation of subdiffraction-resolution fluorescence images. Journal of Microscopy. 237: 12-22 (2010).