Superresolution Structured Illumination Microscopy Literature References
Structured illumination of the excitation light in superresolution microscopy is designed to utilize the moiré effect to obtain finer spatial frequencies emitted by the specimen that can be extracted from Fourier transforms by overlapping two different spatial frequencies from multiple directions. The mathematical transforms create a moiré pattern where the higher spatial frequency information contained in the image can be extracted using software. The result is lateral resolution in the range of 100 nanometers and axial resolution approaching 300 nanometers.
Recommended Literature
- Baddeley, D., Batram, C., Weiland, Y., Cremer, C. and Birk, U. J. Nanostructure analysis using spatially modulated illumination microscopy. Nature Protocols 2: 2640-2646 (2007).
- Beck, M., Aschwanden, M. and Stemmer, A. Sub-100-nanometre resolution in total internal reflection fluorescence microscopy. Journal of Microscopy 232: 99-105 (2008).
- Carlton, P. M. Three-dimensional structured illumination microscopy and its application to chromosome structure. Chromosome Research 16: 351-365 (2008).
- Fedosseev, R., Belyaev, Y., Frohn, J. and Stemmer, A. Structured light illumination for extended resolution in fluorescence microscopy. Optics and Lasers in Engineering 43:403-414 (2005).
- Fitzgibbon, J., Bell, K., King, E. and Oparka, K. Super-resolution imaging of plasmodesmata using three-dimensional structured illumination microscopy. Plant Physiology 153: 1453-1463 (2010).
- Gustafsson, M. G. L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. Journal of Microscopy 198: 82-87 (2000).
- Gustafsson, M. G. L. Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution. Proceedings of the National Academy of Sciences (USA) 102: 13081-13086 (2005).
- Gustafsson, M. G. L., Agard, D. A. and Sedat, J. W. Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination. Proceedings of SPIE 3919:141-150 (2000).
- Gustafsson, M. G. L., Shao, L., Carlton, P. M., Wang, C. J. R., Golubovskaya, I. N., Cande, W. Z., Agard, D. A. and Sedat, J. W. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophysical Journal 94: 4957-4970 (2008).
- Heintzmann, R. Saturated patterned excitation microscopy with two-dimensional excitation patterns. Micron 34: 283-291 (2003).
- Heintzmann, R. and Benedetti, P. A. High-resolution image reconstruction in fluorescence microscopy with patterned excitation. Applied Optics 45: 5037-5045 (2006).
- Heintzmann, R. and Cremer, C. Laterally modulated excitation microscopy: Improvements of resolution by using a diffraction grating. Proceedings of SPIE 3568: 185-196 (1999).
- Heintzmann, R. and Gustafsson, M. G. L. Subdiffraction resolution in continuous samples.Nature Photonics 3: 362-364 (2009).
- Hirvonen, L. M., Wicker, K., Mandula, O. and Heintzmann, R. Structured illumination microscopy of a living cell. European Biophysics Journal 38: 807-812 (2009).
- Keller, J., Schmidt, A. D., Santella, A., Khairy, K., Bao, Z., Wittbrodt, J. and Stelzer, E. H. K. Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy. Nature Methods 7: 637-642 (2010).
- Kner, P., Chhun, B. B., Griffis, E. R., Winoto, L. and Gustafsson, M. G. L. Super-resolution video microscopy of live cells by structured illumination. Nature Methods 6: 339-342 (2009).
- Langhorst, M. F., Schaffer, J. and Goetze, B. Structure brings clarity: Structured illumination microscopy in cell biology. Biotechnology Journal 4: 858-865 (2009).
- Lemmer, P., Gunkel, M., Baddeley, D., Kaufmann, R., Urich, A., Weiland, Y., Reymann, J., Muller, P., Hausmann, M. and Cremer, C. SPDM: Light microscopy with single-molecule resolution at the nanoscale. Applied Physics B: Lasers and Optics 93: 1-12 (2008).
- Lin, J., Huang, R., Tsai, P. and Lee, C. H. Wide-field super-resolution optical sectioning microscopy using a single spatial light modulator. Journal of Optics A: Pure and Applied Optics 11: 015301-6 (2009).
- Schermelleh, L., Carlton, P. M., Haase, S., Shao, L., Winoto, L., Kner, P., Burke, B., Cardoso, M. C., Agard, D. A., Gustafsson, M. G. L., Leonhardt, H. and Sedat, J. W. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy.Science 320: 1332-1336 (2008).
- Stemmer, A., Beck, M. and Fiolka, R. Widefield fluorescence microscopy with extended resolution. Histochemistry and Cell Biology 130: 807-817 (2008).
- Wei, F. and Liu, Z. Plasmonic structured illumination microscopy. Nano Letters 10: 2531-2536 (2010).
Additional Literature Sources
- Albrecht, B., Failla, A. V., Schweitzer, A. and Cremer, C. Spatially modulated illumination microscopy allows axial distance resolution in the nanometer range. Applied Optics 41:80-87 (2002).
- Baddeley, D., Chagin, V. O., Schermelleh, L., Martin, S., Pombo, A., Carlton, P. M., Gahl, A., Domaing, P., Birk, U., Leonhardt, H., Cremer, C. and Cardoso, M. C. Measurement of replication structures at the nanometer scale using super-resolution light microscopy.Nucleic Acids Research 38: e8 (2010).
- Bailey, B., Farkas, D. L., Taylor, D. L. and Lanni, F. Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation. Nature 366: 44-48 (1993).
- Bertero, M., Boccacci, P., Defrise, M., De Mol, C. and Pike, E. R. Super-resolution in confocal scanning microscopy: II. the incoherent case. Inverse Problems 5: 441-461 (1989).
- Bertero, M., Brianzi, P., Parker, P. and Pike, E. R. Resolution in diffraction-limited imaging, a singular value analysis. Journal of Modern Optics 31: 181-201 (1984).
- Beversluis, M. R., Bryant, G. W. and Stranick, S. J. Effects of inhomogeneous fields in superresolving structured-illumination microscopy. Journal of the Optical Society of America A 25: 1371-1377 (2008).
- Boulanger, J., Kervrann, C. and Routhemy, P. Space-time adaptation for patch-based image sequence restoration. IEEE Transactions on Pattern Analysis and Machine Intelligence 29:1096-1102 (2007).
- Boulanger, J., Kervrann, C., Routhemy, P., Elbau, P., Sibarita, J. and Salamero, J. Patch-based nonlocal functional for denoising fluorescence microscopy image sequences. IEEE Transactions on Medical Imaging 29: 422-454 (2010).
- Carlson, C. A. and Woehl, J. C. Fabrication of optical tips from photonic crystal fibers.Review of Scientific Instruments 79: 103707-5 (2008).
- Chang, B., Chou, L., Chang, Y. and Chiang, S. Isotropic image in structured illumination microscopy patterned with a spatial light modulator. Optics Express 17: 14710-14721 (2009).
- Chasles, F., Dubertret, B. and Boccara, A. C. Optimization and characterization of a structured illumination microscope. Optics Express 15: 16130-16140 (2007).
- Chung, E., Kim, D., Cui, Y., Kim, Y. and So, P. T. C. Two-dimensional standing wave total internal reflection fluorescence microscopy: Superresolution imaging of single molecular and biological specimens. Biophysical Journal 93: 1747-1757 (2007).
- Chung, E., Kim, D. and So, P. T. C. Extended resolution wide-field optical imaging: Objective-launched standing-wave total internal reflection fluorescence microscopy.Optics Letters 31: 945-947 (2006).
- Cogger, V. C., McNerney, G. P., Nyunt, T., DeLeve, L. D., McCourt, P., Smedsrod, B., Le Couteur, D. G. and Huser, T. R. Three-dimensional structured illumination microscopy of liver sinusoidal endothelial cell fenestrations. Journal of Structural Biology 171: 382-388 (2010).
- Cragg, G. E., So, P. T. C. Lateral resolution enhancement with standing evanescent waves.Optics Letters 25: 46-48 (2000).
- Debarre, D., Botcherby, E. J., Booth, M. J. and Wilson, T. Adaptive optics for structured illumination microscopy. Optics Express 16: 9290-9305 (2008).
- Failla, A. V., Spoeri, U., Albrecht, B., Kroll, A. and Cremer, C. Nanosizing of fluorescent objects by spatially modulated illumination microscopy. Applied Optics 41: 7275-7283 (2002).
- Fiolka, R., Beck, M. and Stemmer, A. Structured illumination in total internal reflection fluorescence microscopy using a spatial light modulator. Optics Letters 33: 1629-1631 (2008).
- Frohn, J. T., Knapp, H. F. and Stemmer, A. True optical resolution beyond the Rayleigh limit achieved by standing wave illumination. Proceedings of the National Academy of Sciences (USA) 97: 7232-7236 (2000).
- Frohn, J. T., Knapp, H. F. and Stemmer, A. Three-dimensional resolution enhancement in fluorescence microscopy by harmonic excitation. Optics Letters 26: 828-830 (2001).
- Gustafsson, M. G. L. Super-resolution light microscopy goes live. Nature Methods 5: 385-387 (2008).
- Gustafsson, M. G. L. Extended resolution fluorescence microscopy. Current Opinion in Structural Biology 9: 627-628 (1999).
- Gustafsson, M. G. L., Agard, D. A. and Sedat, J. W. Sevenfold improvement of axial resolution in3D widefield microscopy using two objective lenses. Proceedings of SPIE2412: 147-155 (1995).
- Gustafsson, M. G. L., Agard, D. A. and Sedat, J. W. 3D widefield microscopy with two objective lenses: Experimental verification of improved axial resolution. Proceedings of SPIE 2655: 62-66 (1996).
- Hildenbrand, G., Rapp, A., Spori, U., Wagner, C., Cremer, C. and Hausmann, M. Nano-sizing of specific gene domains in intact human cell nuclei by spatially modulated illumination light microscopy. Biophysical Journal 88: 4312-4318 (2005).
- Hirvonen, L. M., Mandula, O., Wicker, K. and Heintzmann, R. Structured illumination microscopy using photoswitchable fluorescent proteins. Proceedings of SPIE 6861:168610L-8 (2008).
- Hoffman, M., Eggeling, C., Jakobs, S. and Hell, S. W. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proceedings of the National Academy of Sciences (USA) 102: 17565-17569 (2005).
- Karadaglic, D. and Wilson, T. Image formation in structured illumination wide-field fluorescence microscopy. Micron 39: 808-818 (2008).
- Lee, G. S., Miele, L. F., Turhan, A., Lin, M., Hanidziar, D., Konerding, M. A. and Mentzer, S. J. Spatial calibration of structured illumination fluorescence microscopy using capillary tissue phantoms. Microscopy Research and Technique 72: 85-92 (2009).
- Littleton, B., Lai, K., Longstaff, D., Sarafis, V., Munroe, P., Heckenberg, N. and Rubinsztein-Dunlop, H. Coherent super-resolution microscopy via laterally structured illumination.Micron 38: 150-157 (2007).
- Liu, S., Chuang, C. J., See, C. W., Zoriniants, G., Barnes, W. L. and Somekh, M. G. Double-grating-structured light microscopy using plasmonic nanoparticle arrays. Optics Letters34: 1255-1257 (2009).
- Lukosz, W. Optical systems with resolving powers exceeding the classical limit. Journal of the Optical Society of America 56: 1463-1471 (1966).
- Martin, S., Failla, A. V., Spori, U., Cremer, C. and Pombo, A. Measuring the size of biological nanostructures with spatially modulated illumination microscopy. Molecular Biology of the Cell 15: 2449-2455 (2004).
- Mazhar, A., Cuccia, D. J., Gioux, S., Durkin, A. J., Frangioni, J. V. and Tromberg, B. J. Structured illumination enhances resolution and contrast in thick tissue fluorescence imaging. Journal of Biomedical Optics 15: 0105061-3 (2010).
- Reymann, J., Baddeley, D., Lemmer, P., Stadter, W., Jegou, T., Rippe, K., Cremer, C. and Birk, U. High-precision structural analysis of subnuclear complexes in fixed and live cells via spatially modulated illumination (SMI) microscopy. Chromosome Research 16: 367-382 (2008).
- Rodriguez, P. F. G., Sepulveda, E., Dubertret, B. and Loriette, V. Axial coding in full-field microscopy using three-dimensional structured illumination implemented with no moving parts. Optics Letters 33: 1617-1619 (2008).
- Sentenac, A., Belkebir, K., Giovannini, H. and Chaumet, P. C. Subdiffraction resolution in total internal reflection fluorescence microscopy with a grating substrate. Optic Letters 33:255-257 (2008).
- Shroff, S. A., Fienup, J. R. and Williams, D. R. Phase-shift estimation in sinusoidally illuminated images for lateral superresolution. Journal of the Optometric Society of America A 26: 413-424 (2009).
- Somekh, M. G., Hsu, K. and Pitter, M. Resolution in structured illumination: A probabilistic approach. Journal of the Optometric Society of America A 25: 1319-1329 (2008).
- Somekh, M. G., Hsu, K. and Pitter, M. Stochastic transfer function for structured illumination microscopy. Journal of the Optometric Society of America A 26: 1630-1637 (2009).
- Yamanaka, M., Kawano, S., S., Fujita, K., Smith, N. I. and Kawata, S. Beyond the diffraction-limit biological imaging by saturated excitation microscopy. Journal of Biomedical Optics13: 050507-3 (2008).