Superresolution Microscopy Literature References
Even though optical microscopy is limited in lateral and axial resolution to limits of approximately 200 and 500 nanometers, respectively, recent breakthroughs have resulted in the introduction of superresolution imaging techniques that have broken this diffraction limit. Current efforts are focused on using these new techniques to explore the intricacies of intracellular structure and on further improving spatial resolution with an ultimate goal of 1-5 nanometers.
Recommended Literature
- Hell, S. W. Far-field optical nanoscopy. Science 316: 1153-1158 (2007).
- Dedecker, P., Flors, C., Hotta, J. I., Uji-i, H. and Hofkens, J. 3D nanoscopy: Bringing biological nanostructures into sharp focus. Angewandte Chemie International Edition 46: 8330-8332 (2007).
- Fernandez-Suarez, M. and Ting, A. Y. Fluorescent probes for super-resolution imaging in living cells. Nature Reviews Molecular Cell Biology 9: 929-943 (2008).
- Ji, N., Shroff, H., Zhong, H. and Betzig, E. Advances in the speed and resolution of light microscopy. Current Opinion in Neurobiology 18: 605-616 (2008).
- Gould, T. J. and Hess, S. T. Nanoscale biological fluorescence imaging: breaking the diffraction barrier. Methods in Cell Biology 89: 329-358 (2008).
- Bossi, M., Folling, J., Dyba, M., Westphal, V. and Hell, S W. Breaking the diffraction resolution barrier in far-field microscopy by molecular optical bistability. New Journal of Physics 8:275-280 (2006).
- Hell, S. W. Toward fluorescence nanoscopy. Nature Biotechnology 21: 1347-1355 (2003).
- Hell, S. W., Dyba, M. and Jakobs, S. Concepts for nanoscale resolution in fluorescence microscopy. Current Opinion in Neurobiology 14: 599-609 (2004).
- Dedecker, P., Hofkens, J. and Hotta, J. I. Diffraction-unlimited optical microscopy. Materials Today 11: 12-21 (2008).
- Hell, S. W. Microscopy and its focal switch. Nature Methods 6: 24-32 (2009).
- Heintzmann, R. and Ficz, G. Breaking the resolution limit in light microscopy. Briefings in Functional Genomics and Proteomics 5: 289-301 (2006).
- Garini, Y., Bermolen, B. J. and Young, I. T. From micro to nano: recent advances in high-resolution microscopy. Current Opinion in Biotechnology 16: 3-12 (2005).
- Egner, A. and Hell, S. W. Fluorescence microscopy with super-resolved optical sections.Trends in Cell Biology 15: 207-215 (2005).
- Stemmer, A., Beck, M. and Fiolka, R. Widefield fluorescence microscopy with extended resolution. Histochemistry and Cell Biology 130: 807-817 (2008).
- Willig, K. I., Keller, J., Bossi, M. and Hell, S. W. STED microscopy resolves nanoparticle assemblies. New Journal of Physics 8: 106-112 (2006).
- Rice, J. H. Beyond the diffraction limit: Far-field fluorescence imaging with ultrahigh resolution. Molecular BioSystems 3: 781-793 (2007).
- Gould, T. J., Verkhusha, V. V. and Hess, S. T. Imaging biological structures with fluorescence photoactivation localization microscopy. Nature Protocols 4: 291-308 (2009).
- Gustafsson, M. G. L. Extended resolution fluorescence microscopy. Current Opinion in Structural Biology 9: 627-634 (1999).
- Betzig, E., Patterson, G. H., Sougrat, R., Lindwasser, O. W., Olenych, S., Bonifacino, J. S., Davidson, M. W., Lippincott-Schwartz, J. and Hess, H. F., Imaging intracellular fluorescent proteins at nanometer resolution. Science 313: 1642-1645 (2006).
- Hess, S. T., Giriajan, T. P. K. and Mason, M. D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophysical Journal 91: 4258-4272 (2006).
- Rust, M. J., Bates, M. and Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods 3: 793-795 (2006).
- Bates, M., Huang, B., Dempsey, G. T. and Zhuang, X. Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317: 1749-1767 (2007).
- Egner, A., Verrier, S., Goroshkov, A., Soling, H. D. and Hell, S. W. 4Pi-microscopy of the Golgi apparatus in live mammalian cells. Journal of Structural Biology 147: 70-76 (2004).
- Heilemann, M., van de Linde, S., Schuttpelz, M., Kasper, R., Seefeldt, B., Mukherjee, A., Tinnefeld, P. and Sauer, M. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angewandte Chemie International Edition 47: 6172-6176 (2008).
- Huang, B., Jones, S. A., Brandenburg, B. and Zhuang, X. Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nature Methods5: 1047-1072 (2008).
- Huang, B., Wang, W., Bates, M. and Zhuang, X. Three-dimensional super-resolution imaging by scholastic optical reconstruction microscopy. Science 319: 810-822 (2008).
- Reynaud, E. G., Krzic, U., Greger, K. and Stelzer, E H. K. Light sheet-based fluorescence microscopy: More dimensions, more photons, and less photodamage. HFSP Journal 2:266-275 (2008).
- Lippincott-Schwartz, J. and Patterson, G. H. Photoactivatible fluorescent proteins for diffraction-limited and super-resolution imaging. Trends in Cell Biology 19: 555-565 (2009).
- Shroff, H., Galbraith, C. G., Galbraith, J. A. and Betzig, E., Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nature Methods 5: 417-436 (2008).
- Patterson, G. H. Fluorescence microscopy below the diffraction limit. Seminars in Cell and Developmental Biology 20: 886-893 (2009).
- Zhuang, X. Nano-imaging with STORM. Nature Photonics 3: 365-367 (2009).
- Lippincott-Schwartz, J. and Manley, S. Putting super-resolution fluorescence microscopy to work. Nature Methods 6: 21-23 (2009).
- Hell, S. W., Schmidt, R. and Egner, A. Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses. Nature Photonics 3: 381-387 (2009).
Additional Literature Sources
- Agrawal, A., Deo, R., Wang, G. D., Wang, M. D. and Nie, S. Nanometer-scale mapping and single-molecule detection with color-coded nanoparticle probes. Proceedings of the National Academy of Sciences (USA) 105: 3298-3303 (2008).
- Albrecht, B., Failla, A. V., Schweitzer, A. and Cremer, C. Spatially modulated illumination microscopy allows axial distance resolution in the nanometer range. Applied Optics 41:80-87 (2002).
- Alessandrini, J. L. Intrinsic viscosity of flexible ring polymers. Journal of Polymer Science18: 811-816 (2003).
- Andresen, M., Stiel, A. C., Folling, J., Wenzel, D., Schonle, A., Egner, A., Eggeling, C., Hell, S. W. and Jakobs, S. Photoswitchable fluorescent proteins enable monochromatic multilabel imaging and dual color fluorescence nanoscopy. Nature Biotechnology :26 1035-1040 (2008).
- Andrew, T. L., Tsai, H. and Menon, R. Confining light to deep subwavelength dimensions.Science 324: 917-921 (2009).
- Arkhipov, A., Huve, J. H., Kahms, M., Peters, R. and Schulten, K. Continuous fluorescence microphotolysis and correlation spectroscopy using 4Pi microscopy. Biophysical Journal93: 4006-4017 (2007).
- Arkhipov, A. and Schulten, K. Limits for reduction of effective focal volume in multiple-beam light microscopy. Optics Express 17: 2861-2870 (2009).
- Baddeley, D., Batram, C., Weiland, Y., Cremer, C. and Birk, U. J. Nanostructure analysis using spatially modulated illumination microscopy. Nature Protocols 2: 2640-2646 (2007).
- Baddeley, D., Chagin, V. O., Schermelleh, L., Martin, S., Pombo, A., Carlton, P. M., Gahl, A., Domaing, P., Birk, U., Leonhardt, H., Cremer, C. and Cardoso, M. C. Measurement of replication structures at the nanometer scale using super-resolution light microscopy.Nucleic Acids Research 38: 1-11 (2010).
- Baddeley, D., Jayasinghe, I. D., Cremer, C., Cannell, M. B. and Soeller, C. Light-induced dark states of organic fluochromes enable 30nm resolution imaging in standard media.Biophysical Journal 96: L22-L32 (2009).
- Bahlmann, K. and Hell, S. W. Polarization effects in 4Pi confocal microscopy studied with water-immersion lenses. Applied Optics 39: 1652-1658 (2000).
- Bahlmann, K., Jakobs, S. and Hell, S. W. 4Pi-confocal microscopy of live cells.Ultramicroscopy 87: 155-164 (2001).
- Barlow, A. L. and Guerin, C. J. Quantization of widefield fluorescence images using structured illumination and image analysis software. Microscopy Research and Technique70: 76-84 (2007).
- Barretto, R. P. J., Messerschmidt, B. and Schnitzer, M. J. In vivo fluorescence imaging with high-resolution microlenses. Nature Methods 6: 511-514 (2009).
- Bates, M., Blosser, T. R. and Zhuang, X. Short-range spectroscopic ruler based on a single-molecule optical switch. Physical Review Letters 94: 108101-1-108101-4 (2005).
- Bates, M., Huang, B. and Zhuang, X. Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes. Current Opinion in Chemical Biology 12: 505-514 (2008).
- Belfield, K. D., Bondar, M. V., Yanez, C. O., Hernandez, F. E. and Przhonska, O. V. One- and two-photon stimulated emission depletion of a sulfonyl-containing fluorene derivative.Journal of Physical Chemistry B 113: 7101-7106 (2009).
- Bennett, B. T., Bewersdorf, J. and Knight, K. L. Immunofluorescence imaging of DNA damage response proteins: optimizing protocols for super-resolution microscopy. Methods 48: 63-71 (2009).
- Betzig, E. Proposed method for molecular optical imaging. Optics Letters 20: 237-239 (1995).
- Betzig, E. Excitation strategies for optical lattice microscopy. Optics Express 13: 3021-3036 (2005).
- Betzig, E. Sparse and composite coherent lattices. Physical Review A 71: 063406-1-063406-5 (2005).
- Betzig, E. and Chichester, R. J. Single molecules observed by near-field scanning optical microscopy. Science 262: 1422-1425 (1993).
- Betzig, E. and Trautman, J. K. Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 257: 189-195 (1992).
- Bewersdorf, J., Bennett, B. T. and Knight, K. L. H2AX chromatin structures and their response to DNA damage revealed by 4Pi microscopy. Proceedings of the National Academy of Sciences (USA) 103: 18137-18142 (2006).
- Bewersdorf, J., Schmidt, R. and Hell, S. W. Comparison of I5M and 4Pi-microscopy. Journal of Microscopy 222: 105-117 (2006).
- Biteen, J. S., Thompson, M. A., Tselentis, N. K., Bowman, G. R., Shapiro, L. and Moerner, W. E.Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP. Nature Methods 5: 947-956 (2008).
- Blanca, C. M. and Hell, S. W. Sharp spherical focal spot by dark ring 4pi-confocal microscopy. Single Molecules 2: 207-210 (2001).
- Blow, N. Cell imaging: New ways to see a smaller world. Nature 456: 825-828 (2008).
- Blum, C. and Subramaniam, V. Single-molecule spectroscopy of fluorescent proteins.Analytical and Bioanalytical Chemistry 393: 527-541 (2009).
- Bobroff, N. Position measurement with a resolution and noise-limited instrument. Review of Scientific Instruments 57: 1152-1157 (1986).
- Bock, H., Geisler, C., Wurm, C. A., Middendorff, C. V., Jakobs, S., Schonle, A., Egner, A., Hell, S. W. and Eggeling, C. Two-color far-field fluorescence nanoscopy based on photoswitchable emitters. Applied Physics B 88: 161-165 (2007).
- Bornfleth, H., Edelmann, P., Zink, D., Cremer, T. and Cremer, C. Quantitative motion analysis of subchromosomal foci in living cells using four-dimensional microscopy. Biophysical Journal 77: 2871-2886 (1999).
- Bossi, M., Folling, J., Belov, V. N., Boyarskiy, V. P., Medda, R., Egner, A., Eggeling, C., Schonle, A. and Hell, S. W. Multicolor far-field fluorescence nanoscopy through isolated detection of distinct molecular species. Nano Letters 8: 2463-2468 (2008).
- Boyer, D., Tamarat, P., Maali, A., Lounis, B. and Orrit, M. Photothermal imaging of nanometer-sized metal particles among scatterers. Science 297: 1160-1163 (2002).
- Bretschneider, S., Eggeling, C. and Hell, S. W. Breaking the diffraction barrier in fluorescence microscopy by optical shelving. Physical Review Letters 98: 218103-1-21803-4 (2007).
- Burns, D. H., Callis, J. B., Christian, G. D. and Davidson, E. R. Strategies for attaining super-resolution using spectroscopic data as constraints. Applied Optics 24: 154-161 (1985).
- Bystricky, K., Heun, P., Gehlen, L., Langowski, J. and Gasser, S. M. Long-range compaction and flexibility of interphase chromatin in budding yeast analyzed by high-resolution imaging techniques. Proceedings of the National Academy of Sciences (USA) 101: 16495-16500 (2004).
- Carlton, P. M. Three-dimensional structured illumination microscopy and its application to chromosome structure. Chromosome Research 16: 351-365 (2008).
- Carrington, W. A., Lynch, R. M., Moore, E. D. W., Isenberg, G., Fogarty, K. E. and Fay, F. S. Superresolution three-dimensional images of fluorescence in cells with minimal light exposure. Science 268: 1483-1487 (1995).
- Chasles, F., Dubertret, B. and Boccara, A. C. Optimization and characterization of a structured illumination microscope. Optics Express 15: 16130-16140 (2007).
- Cheezum, M. K., Walker, W. F. and Guilford, W. H. Quantitative comparison of algorithms for tracking single fluorescent particles. Biophysical Journal 81: 2378-2388 (2001).
- Chi, K. R. Microscopy: Ever-increasing resolution. Nature 462: 675-678 (2009).
- Chmyrov, A., Arden-Jacob, J., Zilles, A., Drexhage, K. H. and Widengren, J. Characterization of new fluorescent labels for ultra-high resolution microscopy. Photochemical and Photobiological Sciences 7: 1378-1385 (2008).
- Churchman, L. S., Okten, Z., Rock, R. S., Dawson, J. F. and Spudich, J. A. Single molecule high resolution colocalization of Cy3 and Cy5 attached to macromolecules measures intramolecular distances through time. Proceedings of the National Academy of Sciences (USA) 102: 1419-1423 (2005).
- Conchello, J. and Lichtman, J. W. Optical sectioning microscopy. Nature Methods 2: 920-931 (2005).
- Cordes, T., Strackharn, M., Stahl, S. W., Summerer, W., Steinhauer, C., Forthmann, C., Puchner, E. M., Vogelsang, J., Gaub, H. E. and Tinnefeld, P. Resolving single-molecule assembled patterns with super-resolution blink-microscopy. Nano Letters 10: 645-651 (2010).
- Couzin, J. New optics strategies cut through diffraction barrier. Science 313: 748-749 (2006).
- Cseresnyes, Z., Schwarz, U. and Green, C. M. Analysis of replication factories in human cells by super-resolution light microscopy. BMC Cell Biology 10: 1-12 (2009).
- Davis, B. J., Karl, W. C., Swan, A. K. and Unlu, M. S. Capabilities and limitations of pupil-plane filters for superresolution and image enhancement. Optics Express 12: 4150-4156 (2004).
- de Bakker, B. I., Bodnar, A., van Dijk, E. M. H. P., Vamosi, G., Damjanovich, S., Waldmann, T. A., van Hulst, N. F., Jenei, A. and Garcia-Parajo, M. F. Nanometer-scale organization of the alpha subunits of the receptors for IL2 and IL15 in human T lymphoma cells. Journal of Cell Science 121: 627-633 (2008).
- de Jonge, N., Peckys, D. B., Kremers, G. J. and Piston, D. W. Electron microscopy of whole cells in liquid with nanometer resolution. Proceedings of the National Academy of Sciences (USA) 106: 2159-2164 (2009).
- de Souza, N. New twists on photoswitchable proteins. Nature Methods 5: 858-859 (2008).
- Debarre, D., Botcherby, E. J., Booth, M. J. and Wilson, T. Adaptive optics for structured illumination microscopy. Optics Express 16: 9290-9305 (2008).
- Dedecker, P., Hotta, J., Flors, C., Sliwa, M., Uji-i, H., Roeffaers, M. B. J., Ando, R., Mizuno, H., Miyawaki, A. and Hofkens, J. Subdiffraction imaging through the selective donut-mode depletion of thermally stable photoswitchable fluorophores: Numerical analysis and application to the fluorescent protein Dronpa. Journal of the American Chemical Society129: 16132-16141 (2007).
- Dempsey, G. T., Bates, M., Kowtoniuk, W. E., Liu, D. R., Tsien, R. Y. and Zhuang, X. Photoswitching mechanism of cyanine dyes. Journal of the American Chemical Society131: 18192-18193 (2009).
- Deng, S., Liu, L., Cheng, Y., Li, R. and Xu, Z. Investigation of the influence of the aberration induced by a plane interface on STED microscopy. Optics Express 17: 1714-1725 (2009).
- Denk, W., Strickler, J. H. and Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 248: 73-76 (1990).
- Dodt, H. U., Leischner, U., Schierloh, A., Jahrling, N., Mauch, C. P., Deininger, K., Deussing, J. M., Eder, M., Zieglgansberger, W. and Becker, K. Ultramicroscopy: Three-dimensional visualization of neuronal networks in the whole mouse brain. Nature Methods 4: 331-336 (2007).
- Donnert, G., Eggeling, C. and Hell, S. W. Major signal increase in fluorescence microscopy through dark-state relaxation. Nature Methods 4: 81-86 (2007).
- Donnert, G., Eggeling, C. and Hell, S. W. Triplet-relaxation microscopy with bunched pulsed excitation. Photochemical and Photobiological Sciences 8: 481-485 (2009).
- Donnert, G., Keller, J., Medda, R., Andrei, M. A., Rizzoli, S. O., Luhrmann, R., Jahn, R., Eggeling, C. and Hell, S. W. Macromolecular-scale resolution in biological fluorescence microscopy. Proceedings of the National Academy of Sciences (USA) 103: 11440-11445 (2006).
- Donnert, G., Keller, J., Wurm, C. A., Rizzoli, S. O., Westphal, V., Schonle, A., Jahn, R., Jakobs, S., Eggeling, C. and Hell, S. W. Two-color far-field fluorescence nanoscopy. Biophysical Journal :92 L67-L69 (2007).
- Dyba, M. and Hell, S. W. Focal spots of size wavelength/23 open up far-field florescence microscopy at 33 nm axial resolution. Physical Review Letters 88: 163901-1-163901-4 (2002).
- Dyba, M. and Hell, S. W. Photostability of a fluorescent marker under pulsed excited-state depletion through stimulated emission. Applied Optics 42: 5123-5129 (2003).
- Dyba, M., Jakobs, S. and Hell, S. W. Immunofluorescence stimulated emission depletion microscopy. Nature Biotechnology 21: 1303-1304 (2003).
- Eggeling, C., Hilbert, M., Bock, H., Ringemann, C., Hofmann, M., Stiel, A. C., Andresen, M., Jakobs, S., Egner, A., Schonle, A. and Hell, S. W. Reversible photoswitching enables single-molecule fluorescence fluctuation spectroscopy at high molecular concentration.Microscopy Research and Technique 70: 1003-1009 (2007).
- Eggeling, C., Ringemann, C., Medda, R., Schwarzmann, G., Sandhoff, K., Polyakova, S., Belov, V. N., Hein, B., von Middendorff, C., Schonle, A. and Hell, S. W. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457: 1159-1162 (2009).
- Egner, A., Geisler, C., von Middendorff, C., Bock, H., Wenzel, D., Medda, R., Andresen, M., Stiel, A. C., Jakobs, S., Eggeling, C., Schonle, A. and Hell, S. W. Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters. Biophysical Journal 93:3285-3290 (2007).
- Egner, A., Jakobs, S. and Hell, S. W. Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast. Proceedings of the National Academy of Sciences (USA) 99: 3370-3375 (2002).
- Enderlein, J. Breaking the diffraction limit with dynamic saturation optical microscopy.Applied Physics Letters 87: 094105-1-094105-3 (2005).
- Evanko, D. STEDy progress. Nature Methods 3: 661 (2006).
- Evanko, D. Seeing fluorescence at super-resolution. Nature Methods 5: 22 (2008).
- Fedosseev, R., Belyaev, Y., Frohn, J. and Stemmer, A. Structured light illumination for extended resolution in fluorescence microscopy. Optics and Lasers in Engineering 43:403-414 (2005).
- Fitzpatrick, J. A. J., Yan, Q., Sieber, J. J., Dyba, M., Schwarz, U., Szent-Gyorgyi, C., Woolford, C. A., Berget, P. B., Waggoner, A. S. and Bruchez, M. P. STED nanoscopy in living cells using fluorogens activating proteins. Bioconjugate Chemistry 20: 1843-1847 (2009).
- Flors, C., Hotta, J. I., Uji-i, H., Dedecker, P., Ando, R., Mizuno, H., Miyawaki, A. and Hofkens, J. A stroboscopic approach for fast photoactivation-localization microscopy with Dronpa mutants. Journal of the American Chemical Society 129: 13970-13977 (2007).
- Flors, C., Ravarani, C. N. J. and Dryden, D. T. F. Super-resolution imaging of DNA labelled with intercalating dyes. ChemPhysChem 10: 2201-2204 (2009).
- Folling, J., Belov, V., Kunetsky, R., Medda, R., Schonle, A., Egner, A., Eggeling, C., Bossi, M. and Hell, S. W. Photochromic rhodamines provide nanoscopy with optical sectioning.Angewandte Chemie 46: 6266-6270 (2007).
- Folling, J., Belov, V., Riedel, D., Schonle, A., Egner, A., Eggeling, C., Bossi, M. and Hell, S. W. Fluorescence nanoscopy with optical sectioning by two-photon induced molecular switching using continuous-wave lasers. ChemPhysChem 9: 321-326 (2008).
- Folling, J., Bossi, M., Bock, H., Medda, R., Wurm, C. A., Hein, B., Jakobs, S., Eggeling, C. and Hell, S. W. Fluorescence nanoscopy by ground-state depletion and single-molecule return.Nature Methods 5: 943-954 (2008).
- Folling, J., Polyakova, S., Belov, V., van Blaaderen, A., Bossi, M. L. and Hell, S. W. Synthesis and characterization of photoswitchable fluorescent silica nanoparticles. Small 4: 134-142 (2008).
- Freimann, R., Pentz, S. and Horler, H. Development of a standing-wave fluorescence microscope with high nodal plane flatness. Journal of Microscopy 187: 193-200 (1997).
- Frohn, J. T., Knapp, H. F. and Stemmer, A. True optical resolution beyond the Rayleigh limit achieved by standing wave illumination. Proceedings of the National Academy of Sciences (USA) 97: 7232-7236 (2000).
- Frohn, J. T., Knapp, H. F. and Stemmer, A. Three-dimensional resolution enhancement in fluorescence microscopy by harmonic excitation. Optics Letters 26: 828-830 (2001).
- Garini, Y., Vermolen, B. J. and Young, I. T. From micro to nano: Recent advances in high-resolution microscopy. Current Opinion in Biotechnology 16: 3-12 (2005).
- Geisler, C., Schonle, A., von Middendorff, C., Bock, H., Eggeling, C., Egner, A. and Hell, S. W. Resolution of wavelength/10 in fluorescence microscopy using fast single molecule photo-switching. Applied Physics A 88: 223-226 (2007).
- Gelles, J., Schnapp, B. J. and Sheetz, M. P. Tracking kinesin-driven movements with nanometre-scale precision. Nature 331: 450-453 (1988).
- Genet, C. and Ebbesen, T. W. Light in tiny holes. Nature 445: 39-46 (2007).
- Giepmans, B. N. G., Adams, S. R., Ellisman, M. H. and Tsien, R. Y. The fluorescent toolbox for assessing protein location and function. Science 312: 217-224 (2006).
- Glaschick, S., Rocker, C., Deuschle, K., Wiedenmann, J., Oswald, F., Mailander, V. and Nienhaus, G. U. Axial resolution enhancement by 4Pi confocal fluorescence microscopy with two-photon excitation. Journal of Biological Physics 33: 433-443 (2007).
- Gordon, M. P., Ha, T. and Selvin, P. R. Single-molecule high-resolution imaging with photobleaching. Proceedings of the National Academy of Sciences (USA) 101: 6462-6465 (2004).
- Gould, T. J., Gunewardene, M. S., Gudheti, M. V., Verkhusha, V. V., Yin, S., Gosse, J. A. and Hess, S. T. Nanoscale imaging of molecular position and anisotropies. Nature Methods 5:1027-1070 (2008).
- Gugel, H., Bewersdorf, J., Jakobs, S., Engelhardt, J., Storz, R. and Hell, S. W. Cooperative 4Pi excitation and detection yields sevenfold sharper optical sections in live-cell microscopy.Biophysical Journal 87: 4146-4152 (2004).
- Gunkel, M., Erdel, F., Rippe, K., Lemmer, P., Kaufmann, R., Hormann, C., Amberger, R. and Cremer, C. Dual color localization microscopy of cellular nanostructures. Biotechnology Journal 4: 927-938 (2009).
- Gustafsson, M. G. L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. Journal of Microscopy 198: 82-87 (2000).
- Gustafsson, M. G. L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proceedings of the National Academy of Sciences (USA) 102: 13081-13086 (2005).
- Gustafsson, M. G. L. Super-resolution light microscopy goes live. Nature Methods 5: 385-387 (2008).
- Gustafsson, M. G. L., Agard, D. A. and Sedat, J. W. Sevenfold improvement of axial resolution in 3D widefield microscopy using two objective lenses. Proc. Of SPIE 2412:147-156 (1995).
- Gustafsson, M. G. L., Agard, D. A. and Sedat, J. W. Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination. Proc. Of SPIE 3919: 141-150 (2000).
- Gustafsson, M. G. L., Shao, L., Carlton, P. M., Wang, C. J. R., Golubovskaya, I. N., Cande, W. Z., Agard, D. A. and Sedat, J. W. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophysical Journal 94: 4957-4970 (2008).
- Haeberle, O., Xu, C., Dieterlen, A. and Jacquey, S. Multiple-objective microscopy with three-dimensional resolution near 100nm and a long working distance. Optics Letters 26: 1684-1686 (2001).
- Harke, B., Keller, J., Ullal, C. K., Westphal, V., Schonle, A. and Hell, S. W. Resolution scaling in STED microscopy. Optics Express 16: 4154-4162 (2008).
- Harke, B., Ullal, C. K., Keller, J. and Hell, S. W. Three-dimensional nanoscopy of colloidal crystals. Nano Letters 8: 1309-1313 (2008).
- Haustein, E. and Schwille, P. Trends in fluorescence imaging and related techniques to unravel biological information. HFSP Journal 1: 169-180 (2007).
- Hedde, P. N., Fuchs, J., Oswald, F., Wiedenmann, J. and Nienhaus, G. U. Online image analysis software for photoactivation localization microscopy. Nature Methods 6: 689-690 (2009).
- Heilemann, M., Dedecker, P., Hofkens, J. and Sauer, M. Photoswitches: Key molecules for subdiffraction-resolution fluorescence imaging and molecular quantification. Laser and Photonics Reviews 3: 180-202 (2009).
- Heilemann, M., Herten, D. P., Heintzmann, R., Cremer, C., Muller, C., Tinnefeld, P., Weston, D. K., Wolfrum, J. and Sauer, M. High-resolution colocalization of single dye molecules by fluorescence lifetime imaging microscopy. Analytical Chemistry 74: 3511-3517 (2002).
- Heilemann, M., Margeat, E., Kasper, R., Sauer, M. and Tinnefeld, P. Carbocyanine dyes as efficient reversible single-molecule optical switch. Journal of the American Chemical Society 127: 3801-3806 (2005).
- Heilemann, M., van de Linde, S., Mukherjee, A. and Sauer, M. Super-resolution imaging with small organic fluorophores. Angewandte Chemie International Edition 48: 6903-6908 (2009).
- Hein, B., Willig, K. L. and Hell, S. W. Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell. Proceedings of the National Academy of Sciences (USA) 105: 14271-14276 (2008).
- Heinlein, T., Biebricher, A., Schluter, P., Roth, C. M., Herten, D. P., Wolfrum, J., Heilemann, M., Muller, C., Tinnefeld, P. and Sauer, M. High-resolution colocalization of single molecules within the resolution gap of far-field microscopy. ChemPhysChem 6: 949-955 (2005).
- Hein, B., Willig, K. I., Wurm, C. A., Westphal, V., Jakobs, S. and Hell, S. W. Stimulated emission depletion nanoscopy of living cells using SNAP-tag fusion proteins. Biophysical Journal 98: 158-163 (2010).
- Heintzmann, R. Saturated patterned excitation microscopy with two-dimensional excitation patterns. Micron 34: 283-291 (2003).
- Heintzmann, R. and Gustafsson, M. G. L. Subdiffraction resolution in continuous samples.Nature Photonics 3: 362-364 (2009).
- Heintzmann, R., Jovin, T. M. and Cremer, C. Saturated patterned excitation microscopy-a concept for optical resolution improvement. Journal of the Optical Society of America 19:1599-1609 (2002).
- Hell, S. W. Improvement of lateral resolution in far-field fluorescence light microscopy by using two-photon excitation with offset beams. Optics Communications 106: 19-24 (1994).
- Hell, S. W. Strategy for far-field optical imaging and writing without diffraction limit.Physics Letters A 326: 140-145 (2004).
- Hell, S. W. Fluorescence nanoscopy: Breaking the diffraction barrier by the RESOLFT concept. NanoBiotechnology 1: 296-297 (2005).
- Hell, S. W., Jakobs, S. and Kastrup, L. Imaging and writing at the nanoscale with focused visible light through saturable optical transitions. Applied Physics A 77: 859-860 (2003).
- Hell, S. W. and Kroug, M. Ground-state-depletion fluorescence microscopy: a concept for breaking the diffraction resolution limit. Applied Physics B Lasers and Optics 60: 495-497 (1995).
- Hell, S. W. and Nagorni, M. 4Pi confocal microscopy with alternate interference. Optics Letters 23: 1567-1569 (1998).
- Hell, S. W., Schmidt, R. and Egner, A. Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses. Nature Photonics 3: 381-387 (2009).
- Hell, S. W., Soukka, J. and Hanninen, P. E. Two- and multiphoton detection as an imaging mode and means of increasing the resolution in far-field light microscopy: a study based on photon-optics. Bioimaging 3: 64-69 (1995).
- Hell, S. W. and Stelzer, E. H. K. Properties of a 4Pi confocal fluorescence microscope.Journal of the Optometric Society of America A 9: 2159-2166 (1992).
- Hell, S. W. and Stelzer, E. H. K. Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation. Optics Communications 93: 277-282 (1992).
- Hell, S. W. and Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Optics Letters 19: 780-782 (1994).
- Henriques, R. and Mhlanga, M. M. PALM and STORM: What hides beyond the Rayleigh limit? Biotechnology Journal 4: 846-857 (2009).
- Hess, H. F., Betzig, E., Harris, T. D., Pfeiffer, L. N. and West, K. W. Near-field spectroscopy of the quantum constituents of a luminescent system. Science 264: 1740-1745 (1994).
- Hess, S. T., Gould, T. J., Gudheti, M. V., Maas, S. A., Mills, K. D. and Zimmerberg, J. Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories. Proceedings of the National Academy of Sciences (USA) 104: 17370-17375 (2007).
- Hildenbrand, G., Rapp, A., Spori, U., Wagner, C., Cremer, C. and Hausmann, M. Nano-sizing of specific gene domains in intact human cell nuclei by spatially modulated illumination light microscopy. Biophysical Journal 88: 4312-4318 (2005).
- Hoffmann, H. P. and Avers, C. J. Mitochondrion of yeast: Ultrastructural evidence for one giant, branched organelle per cell. Science 181: 749-751 (1973).
- Hoffman, M., Eggeling, C., Jakobs, S. and Hell, S. W. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proceedings of the National Academy of Sciences (USA) 102: 17565-17569 (2005).
- Holtzer, L., Meckel, T. and Schmidt, T. Nanometric three-dimensional tracking of individual quantum dots in cells. Applied Physics Letters 90: 053902-1-053902-3 (2007).
- Huber, A. J., Keilmann, F., Wittborn, J., Aizpurua, J. and Hillenbrand, R. Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices. Nano Letters 8: 3766-3770 (2008).
- Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J. and Stelzer, E. H. K. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305: 1007-1009 (2004).
- Ilev, I. K. Breaking the optical diffraction barrier with nanophotonics Ultrahigh-resolution bioimaging and biosensing in the subwavelength nanometric range with nanobiophotonic technologies. IEEE Circuits and Devices Magazine 22: 60-65 (2006).
- Juette, M. F., Gould, T. J., Lessard, M. D., Mlodzianoski, M. J., Nagpure, B. S., Bennett, B. T., Hess, S. T. and Bewersdorf, J. Three-dimensional sub-100nm resolution fluorescence microscopy of thick samples. Nature Methods 5: 527-540 (2008).
- Juskaitis, R., Wilson, T., Neil, M. A. A. and Kozubek, M. Efficient real-time confocal microscopy with white light sources. Nature 383: 804-806 (1996).
- Kaksonen, M. and Drubin, D. G. PALM Reading: Seeing the future of cell biology at higher resolution. Developmental Cell 11: 438-439 (2006).
- Kam, Z., Kner, P., Agard, D. and Sedat, J. W. Modelling the application of adaptive optics to wide-field microscope live imaging. Journal of Microscopy 226: 33-42 (2007).
- Kano, H., Jakobs, S., Nagorni, M. and Hell, S.W. Dual-color 4Pi-confocal microscopy with 3D-resolution in the 100 nm range. Ultramicroscopy 90: 207-213 (2002).
- Kao, H. P. and Verkman, A. S. Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position. Biophysical Journal 67: 1291-1300 (1994).
- Kastrup, L., Blom, H., Eggeling, C. and Hell, S. W. Fluorescence fluctuation spectroscopy in subdiffraction focal volumes. Physical Review Letters 94: 178104-1-178104-4 (2005).
- Kellner, R. R., Baier, C. J., Willig, K. I., Hell, S. W. and Barrantes, F. J. Nanoscale organization of nicotinic acetylcholine receptors revealed by stimulated emission depletion microscopy. Neuroscience 144: 135-143 (2007).
- Keller, J., Schonle, A. and Hell, S. W. Efficient fluorescence inhibition patterns for RESOLFT microscopy. Optics Express 15: 3361-3371 (2007).
- Kellner, R. R., Baier, C. J., Willig, K. I., Hell, S. W. and Barrantes, F. J. Nanoscale organization of nicotinic acetylcholine receptors revealed by stimulated emission depletion microscopy. Neuroscience 144: 135-143 (2007).
- Kim, S. Y., Gitai, Z., Kinkhabwala, A., Shapiro, L. and Moerner, W. E. Single molecules of the bacterial actin MreB undergo directed treadmilling motion in Caulobacter crescentus.Proceedings of the National Academy of Sciences (USA) 103: 10929-10934 (2006).
- Kittel, R. J., Wichmann, C., Rasse, T. M., Fouquet, W., Schmidt, M., Schmid, A., Wagh, D. A., Pawlu, C., Kellner, R. R., Willig, K. I., Hell, S. W., Buchner, E., Heckmann, M. and Sigrist, S. J. Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release.Science 312: 1051-1054 (2006).
- Klar, T. A., Engel, E. and Hell, S. W. Breaking Abbe's diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes.Physical Review E 64: 066613-9 (2001).
- Kner, P., Chhun, B. B., Griffis, E. R., Winoto, L. and Gustafsson, M. G. L. Super-resolution video microscopy of live cells by structured illumination. Nature Methods 6: 339-354 (2009).
- Kural, C., Kim, H., Syed, S., Goshima, G., Gelfand, V. I. and Selvin, P. R., Kinesin and dynein move a peroxisome in vivo: A tug-of-war or coordinated movement? Science 308: 1469-1472 (2005).
- Lacoste, T. D., Michalet, X., Pinaud, F., Chemla, D. S., Alivisatos, A. P. and Weiss, S. Ultrahigh-resolution multicolor colocalization of single fluorescent probes. Proceedings of the National Academy of Sciences (USA) 97: 9461-9466 (2000).
- Lang, M. C., Engelhardt, J. and Hell, S. W. 4Pi microscopy with linear fluorescence excitation. Optics Letters 32: 259-261 (2007).
- Lang, M. C., Muller, T., Engelhardt, J. and Hell, S. W. 4pi microscopy of type A with 1-photon excitation in biological fluorescence imaging. Optics Express 15: 2459-2467 (2007).
- Lang, M. C., Staudt, T., Engelhardt, J. and Hell, S. W. 4Pi microscopy with negligible sidelobes. New Journal of Physics 10: 043041-1-043041-13 (2008).
- Langhorst, M. F., Schaffer, J. and Goetze, B. Structure brings clarity: Structured illumination microscopy in cell biology. Biotechnology Journal 4: 858-865 (2009).
- Lemmer, P., Gunkel, M., Baddeley, D., Kaufmann, R., Urich, A., Weiland, Y., Reymann, J., Muller, P., Hausmann, M. and Cremer, C. SPDM: Light microscopy with single-molecule resolution at the nanoscale. Applied Physics B 93: 1-12 (2008).
- Lemmer, P., Gunkel, M., Weiland, Y., Muller, P., Baddeley, D., Kaufmann, R., Urich, A., Eipel, H., Amberger, R., Hausmann, M. and Cremer, C. Using conventional fluorescent markers for far-field fluorescence localization nanoscopy allows resolution in the 10-nm range. Journal of Microscopy 235: 163-171 (2009).
- Lidke, K. A., Rieger, B., Jovin, T. M. and Heintzmann, R. Superresolution by localization of quantum dots using blinking statistics. Optics Express 13: 7052-7062 (2005).
- Lindek, S. and Stelzer, E. H. K. Resolution improvement by nonconfocal theta microscopy.Optics Letters 24: 1505-1507 (1999).
- Lippincott-Schwartz, J. and Manley, S. Putting super-resolution fluorescence microscopy to work. Nature Methods 6: 21-23 (2009).
- Lippincott-Schwartz, J. and Patterson, G. H. Photoactivatible fluorescent proteins for diffraction-limited and super-resolution imaging. Trends in Cell Biology 19: 555-565 (2009).
- Liu, Z., Lee, H., Xiong, Y., Sun, C. and Zhang, X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315: 1686 (2007).
- Lord, S. J., Conley, N. R., Lee, H. D., Samuel, R., Liu, N., Twieg, R. J. and Moerner, W. E. A photoactivatible push-pull fluorophore for single-molecule imaging in live cells. Journal of the American Chemical Society 130: 9204-9205 (2008).
- Manley, S., Gillette, J. M., Patterson, G. H., Shroff, H., Hess, H. F., Betzig, E. and Lippincott-Schwartz, J. High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nature Methods 5: 155-168 (2008).
- Mao, S., Benninger, R. K. P., Yan, Y., Petchprayoon, C., Jackson, D., Easley, C. J., Piston, D. W. and Marriott, G. Optical lock-in detection of FRET using synthetic and genetically encoded optical switches. Biophysical Journal 94: 4515-4524 (2008).
- Martin, S., Failla, A. V., Spori, U., Cremer, C. and Pombo, A. Measuring the size of biological nanostructures with spatially modulated illumination microscopy. Molecular Biology of the Cell 15: 2449-2455 (2004).
- Meyer, L., Wildanger, D., Medda, R., Punge, A., Rizzoli, S. O., Donnert, G. and Hell, S. W. Dual-color STED microscopy at 30-nm focal-plane resolution. Small 4: 1095-1100 (2008).
- Michalet, X., Lacoste, T. D. and Weiss, S. Ultrahigh-resolution colocalization of spectrally separable point-like fluorescent probes. Methods 25: 87-102 (2001).
- Michalet, X. and Weiss, S. Using photon statistics to boost microscopy resolution.Proceedings of the National Academy of Sciences (USA) 103: 4797-4798 (2006).
- Middendorff, C. V., Egner, A., Geisler, C., Hell, S. W. and Schonle, A. Isotropic 3D nanoscopy based on single emitter switching. Optics Express 16: 20774-20788 (2008).
- Mlodzianoski, M. J., Juette, M. F., Beane, G. L. and Bewersdorf, J. Experimental characterization of 3D localization techniques for particle-tracking and super-resolution microscopy. Optics Express 17: 8264-8277 (2009).
- Moerner, W. E. Illuminating single molecules in condensed matter. Science 283: 1670-1676 (1999).
- Moerner, W. E. A dozen years of single-molecule spectroscopy in physics, chemistry, and biophysics. Journal of Physical Chemistry B 106: 910-927 (2002).
- Moerner, W. E. Single-molecule mountains yield nanoscale cell images. Nature Methods 3:781-782 (2006).
- Moneron, G. and Hell, S. W. Two-photon excitation STED microscopy. Optics Express 17:14567-14573 (2009).
- Nagorni, M. and Hell, S. W. 4Pi-confocal microscopy provides three-dimensional images of the microtubule network with 100- to 150-nm resolution. Journal of Structural Biology 123:236-247 (1998).
- Nagorni, M. and Hell, S. W. Coherent use of opposing lenses for axial resolution increase in fluorescence microscopy. I. Comparative study of concepts. Journal of the Optical Society of America A 18: 36-48 (2001).
- Nagorni, M. and Hell, S. W. Coherent use of opposing lenses for axial resolution increase. II. Power and limitation of nonlinear image restoration. Journal of the Optical Society of America A 18: 49-54 (2001).
- Nan, X., Sims, P. A., Chen, P. and Xie, X. S. Observation of individual microtubule motor steps in living cells with endocytosed quantum dots. Journal of Physical Chemistry B 109:24220-24224 (2005).
- Neil, M. A. A., Juskaitis, R. and Wilson, T. Method of obtaining optical sectioning by using structured light in a conventional microscope. Optics Letters 22: 1905-1907 (1997).
- Neil, M. A. A., Juskaitis, R. and Wilson, T. Real time 3D fluorescence microscopy by two beam interference illumination. Optics Communications 153: 1-4 (1998).
- Neil, M. A. A., Squire, A., Juskaitis, R., Bastiaens, P. I. H. and Wilson, T. Wide-field optically sectioning fluorescence microscopy with laser illumination. Journal of Microscopy 197: 1-4 (2000).
- Neil, M. A. A., Wilson, T. and Juskaitis, P. I. H. A light efficient optically sectioning microscope. Journal of Microscopy 189: 114-117 (1997).
- Niu, L. and Yu, J. Investigating intracellular dynamics of FtsZ cytoskeleton with photoactivation single-molecule tracking. Biophysical Journal 95: 2009-2016 (2008).
- Ober, R. J., Ram, S. and Ward, E. S. Localization accuracy in single-molecule microscopy.Biophysical Journal 86: 1185-1200 (2004).
- Patterson, G. H. Fluorescence microscopy below the diffraction limit. Seminars in Cell and Developmental Biology 20: 886-893 (2009).
- Pavani, S. R. P., Thompson, M. A., Biteen, J. S., Lord, S. J., Liu, N., Twieg, R. J., Piestun, R. and Moerner, W.E. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proceedings of the National Academy of Sciences (USA) 106: 2995-2999 (2009).
- Peng, W. PALM reading. Nature Methods 6: 243 (2009).
- Pinaud, F. and Dahan, M. Zooming into live cells. Science 320: 187-188 (2008).
- Planken, P. A terahertz nanoscope. Nature 456: 454-455 (2008).
- Poher, V., Zhang, H. X., Kennedy, G. T., Griffin,C., Oddos, S., Gu, E., Elson, D. S., Girkin, J. M., French, P. M. W., Dawson, M. D. and Neil, M. A. A. Optical sectioning microscopes with no moving parts using a micro-stripe array light emitting diode. Optics Express 15: 11196-11206 (2007).
- Pohl, D. W., Denk, W. and Lanz, M. Optical stethoscopy: Image recording with resolution wavelength/20. Applied Physics Letters 44: 651-653 (1984).
- Ponti, A., Machacek, M., Gupton, S. L., Waterman-Storer, C. M. and Danuser, G. Two distinct actin networks drive the protrusion of migrating cells. Science 305: 1782-1786 (2004).
- Prabhat, P., Ram, S., Ward, E. S. and Ober, R. J. Simultaneous imaging of different focal planes in fluorescence microscopy for the study of cellular dynamics in three dimensions.IEEE Transactions on Nanobioscience 3: 237-242 (2004).
- Prabhat, P., Ram, S., Ward, E. S. and Ober, R. J. Simultaneous imaging of several focal planes in fluorescence microscopy for the study of cellular dynamics in 3D. Proceedings of SPIE 6090: 60900L-1-60900L-7 (2006).
- Punge, A., Rizzoli, S. O., Jahn, R., Wildanger, J. D., Meyer, L., Schonle, A., Kastrup, L. and Hell, S. W. 3D reconstruction of high-resolution STED microscope images. Microscopy Research and Technique 71: 644-650 (2008).
- Qu, X., Wu, D., Mets, L. and Scherer, N. F. Nanometer-localized multiple single-molecule fluorescence microscopy. Proceedings of the National Academy of Sciences (USA) 101:11298-11303 (2004).
- Ram, S., Prabhat, P., Chao, J., Ward, E. S. and Ober, R. J. High accuracy 3D quantum dot tracking with multifocal plane microscopy for the study of fast intracellular dynamics in live cells. Biophysical Journal 95: 6025-6043 (2008).
- Ram, S., Ward, E. S. and Ober, R. J. A stochastic analysis of performance limits for optical microscopes. Multidimensional Systems and Signal Processing 17: 27-57 (2006).
- Ram, S., Ward, E. S. and Ober, R. J. Beyond Rayleigh's criterion: A resolution measure with application to single-molecule microscopy. Proceedings of the National Academy of Sciences (USA) 103: 4457-4462 (2006).
- Rankin, B. R. and Hell, S. W. STED microscopy with a MHz pulsed stimulated-Raman-scattering source. Optics Express 17: 15679-15684 (2009).
- Rasnik, I., McKinney, S. A. and Ha T. Nonblinking and long-lasting single-molecule fluorescence imaging. Nature Methods 3: 891-893 (2006).
- Reymann, J., Baddeley, D., Lemmer, P., Stadter, W., Jegou, T., Rippe, K., Cremer, C. and Birk U. High-precision structural analysis of subnuclear complexes in fixed and live cells via Spatially Modulated Illumination (SMI) microscopy. Chromosome Research 16: 367-382 (2008).
- Sabanayagam, C. R., Eid, J. S. and Meller, A. Long time scale blinking kinetics of cyanine fluorophores conjugated to DNA and its effect on Forster resonance energy transfer. The Journal of Chemical Physics 123: 224708 (2005).
- Saffarian, S. and Kirchhausen, T. Differential evanescence nanometry: Live-cell fluorescence measurements with 10-nm axial resolution on the plasma membrane.Biophysical Journal 94: 2333-2342 (2008).
- Schaefer, L. H., Schuster, D. and Schaffer, J. Structured Illumination microscopy: Artifact analysis and reduction utilizing a parameter optimization approach. Journal of Microscopy 216: 165-174 (2004).
- Schermelleh, L., Carlton, P. M., Haase, S., Shao, L., Winoto, L., Kner, P., Burke, B., Cardoso, M. C., Agard, D. A., Gustafsson, M. G. L., Leonhardt, H. and Sedat, J. W. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy.Science 320: 1332-1336 (2008).
- Schmidt, R., Wurm, C. A., Jakobs, S., Engelhardt, J., Egner, A. and Hell, S. W. Spherical nanosized focal spot unravels the interior of cells. Nature Methods 5: 539- 547 (2008).
- Schneider, A., Rajendran, L., Honsho, M., Gralle, M., Donnert, G., Wouters, F., Hell, S. W. and Simons, M. Flotillin-dependent clustering of the amyloid precursor protein regulates its endocytosis and amyloidogenic processing in neurons. Journal of Neuroscience 28: 2874-2882 (2008).
- Schonle, A. and Hell, S. W. Fluorescence nanoscopy goes multicolor. Nature Biotechnology25: 1234-1235 (2007).
- Schrader, M., Bahlmann, K., Giese, G. and Hell, S. W. 4Pi-confocal imaging in fixed biological specimens. Biophysical Journal 75: 1659-1668 (1998).
- Schrader, M., Hell, S. W. and van der Voort, H. T. M. Three-dimensional super-resolution with a 4pi-confocal microscope using image restoration. Journal of Applied Physics 84: 4033-4042 (1998).
- Schroder, J., Benink, H., Dyba, M. and Los, G. V. In vivo labeling method using a genetic construct for nanoscale resolution microscopy. Biophysical Journal 96: L01-L03 (2009).
- Schwentker, M. A., Bock, H., Hofmann, M., Jakobs, S., Bewersdorf, J., Eggeling, C. and Hell, S. W. Wide-field subdiffraction RESOLFT microscopy using fluorescent protein photoswitching. Microscopy Research and Technique 70: 269-280 (2007).
- Shaevitz, J. W. Super-resolution for a 3D world. Nature Methods 5: 471-472 (2008).
- Shannon, C. E. Communication in the presence of noise. Proceedings of the IEEE 86: 447-457 (1998).
- Shao, L., Isaac, B., Uzawa, S., Agard, D. A., Sedat, J. W. and Gustafsson, M. G. L. I5S: Wide-field light microscopy with 100-nm-scale resolution in three dimensions. Biophysical Journal 94: 4971-4983 (2008).
- Sharonov, A. and Hochstrasser, R. M. Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proceedings of the National Academy of Sciences (USA) 103:18911-18916 (2006).
- Shroff, H., Galbraith, C. G., Galbraith, J. A. and Betzig, E., Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nature Methods 5: 417-436 (2008).
- Shroff, H., Galbraith, C. G., Galbraith, J. A., White, H., Gillette, J., Olenych, S., Davidson, M. W. and Betzig, E. Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proceedings of the National Academy of Sciences (USA)104: 20308-20313 (2007).
- Shroff, H., White, H. and Betzig, E. Photoactivation localization microscopy (PALM) of adhesion complexes. Current Protocols in Cell Biology 4: 1-65 (2008).
- Shroff, S. A., Fienup, J. R. and Williams, D. R. Phase-shift estimation in sinusoidally illuminated images for lateral superresolution. Journal of the Optometric Society of America A 26: 413-424 (2009).
- Sieber, J. J., Willig, K. I., Heintzmann, R., Hell, S. W. and Lang, T. The SNARE motif is essential for the formation of syntaxin clusters in the plasma membrane. Biophysical Journal 90: 2843-2851 (2006).
- Sieber, J. J., Willig, K. I., Kutzner, C., Gerding-Reimers, C., Harke, B., Donnert, G., Rammner, B., Eggeling, C., Hell, S. W., Grubmuller, H. and Lang, T. Anatomy and dynamics of a supramolecular membrane protein cluster. Science 317: 1072-1076 (2007).
- Simpson, G. J. The diffraction barrier broken. Nature 440: 879-880 (2006).
- Small, A. R. Theoretical limits on errors and acquisition rates in localizing switchable fluorophores. Biophysical Journal 96: L16-L18 (2009).
- Smalley, M. J., Signoret, N., Robertson, D., Tilley, A., Hann, A., Ewan, K., Ding, Y., Paterson, H. and Dale, T. C. Dishevelled (Dvl-2) activates canonical Wnt signaling in the absence of cytoplasmic puncta. Journal of Cell Science 118: 5279-5289 (2005).
- Smolyaninov, I. I., Hung, Y. and Davis, C. C. Magnifying superlens in the visible frequency range. Science 315: 1699-1701 (2007).
- Smolyaninov, I. I. Optical microscopy beyond the diffraction limit. HFSP Journal 2: 129-131 (2008).
- Speidel, M., Jonas, A. and Florin, E. L. Three-dimensional tracking of fluorescent nanoparticles with subnanometer precision by use of off-focus imaging. Optics Letters28: 69-71 (2003).
- Stark, P. R. H., Halleck, A. E. and Larson, D. N. Breaking the diffraction barrier outside of the optical near-field with bright, collimated light from nanometric apertures. Proceedings of the National Academy of Sciences (USA) 104: 18902-18906 (2007).
- Steinhauer, C., Forthmann, C., Vogelsang, J. and Tinnefeld, P. Superresolution microscopy on the basis of engineered dark states. Journal of the American Chemical Society 130: 16840-16841 (2008).
- Stiel, A. C., Andresen, M., Bock, H., Hilbert, M., Schilde, J., Schonle, A., Eggeling, C., Egner, A., Hell, S. W. and Jakobs, S. Generation of monomeric reversibly switchable red fluorescent proteins for far-field fluorescence nanoscopy. Biophysical Journal 95: 2989-2997 (2008).
- Syed, S., Snyder, G. E., Franzini-Armstrong, C., Selvin, P. R. and Goldman, Y. E. Adaptability of myosin V studied by simultaneous detection of position and orientation. The EMBO Journal 25: 1795-1803 (2006).
- Thibault, P., Dierolf, M., Menzel, A., Bunk, O., David, C. and Pfeiffer, F. High-resolution scanning X-ray diffraction microscopy. Science 321: 379-382 (2008).
- Thompson, R. E., Larson, D. R. and Webb, W. W. Precise nanometer localization analysis for individual fluorescent probes. Biophysical Journal 82: 2775-2783 (2002).
- Toprak, E., Balci, H., Blehm, B. H. and Selvin, P. R. Three-dimensional particle tracking via bifocal imaging. Nano Letters 7: 2043-2045 (2007).
- Torok, P. and Munro, P. R. T. The use of Gauss-Laguerre vector beams in STED microscopy.Optics Express 12: 3605-3617 (2004).
- Torok, P. and Wilson, T. Rigorous theory for axial resolution in confocal microscopes.Optics Communications 137: 127-135 (1997).
- van de Linde, S., Endesfelder, U., Mukherjee, A., Schuttpelz, M., Wiebusch, G., Wolter, S., Heilemann, M. and Sauer, M. Multicolor photoswitching microscopy for subdiffraction-resolution fluorescence imaging. Photochemical and Photobiological Sciences 8: 465-469 (2009).
- van de Linde, S., Kasper, R., Heilemann, M. and Sauer, M. Photoswitching microscopy with standard fluorophores. Applied Physics B 93: 725-731 (2008).
- van de Linde, S., Sauer, M. and Heilemann, M. Subdiffraction-resolution fluorescence imaging of proteins in the mitochondrial inner membrane with photoswitchable fluorophores. Journal of Structural Biology 164: 250-254 (2008).
- van Oijen, A. M., Kohler, J. and Schmidt, J. Far-field fluorescence microscopy beyond the diffraction limit. Journal of the Optical Society of America 16: 909-915 (1999).
- van Oijen, A. M., Kohler, J., Schmidt, J., Muller, M. and Brakenhoff, G. J. 3-dimensional super-resolution by spectrally selective imaging. Chemical Physics Letters 292: 183-187 (1998).
- Vaziri, A., Tang, J., Shroff, H. and Shank, C. V. Multilayer three-dimensional super resolution imaging of thick biological samples. Proceedings of the National Academy of Sciences (USA) 105: 20221-20226 (2008).
- Verveer, P. J. and Bastiaens, P. I. H. Quantitative microscopy and systems biology: seeing the whole picture. Histochemistry and Cell Biology 130: 833-843 (2008).
- Verveer, P. J., Swoger, J., Pampaloni, F., Greger, K., Marcello, M. and Stelzer, E. H. K. High-resolution three-dimensional imaging of large specimens with light sheet-based microscopy. Nature Methods 4: 311-313 (2007).
- Vicidomini, G., Hell, S. W. and Schonle, A. Automatic deconvolution of 4Pi-microscopy data with arbitrary phase. Optics Letters 34: 35833585 (2009).
- Vogelsang, J., Cordes, T., Forthmann, C., Steinhauer, C. and Tinnefeld, P. Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy. Proceedings of the National Academy of Sciences (USA) 106: 8107-8112 (2009).
- Vogelsang, J., Cordes, T., Forthmann, C., Steinhauer, C. and Tinnefeld, P. Intrinsically resolution enhancing probes for confocal microscopy. Nano Letters 10: 672-679 (2010).
- Vogelsang, J., Kasper, R., Steinhauer, C., Person, B., Heilemann, M., Sauer, M. and Tinnefeld, P. A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes. Angewandte Chemie International Edition 47: 5465-5469 (2008).
- Watanabe, T., Iketaki, Y., Omatsu, T., Yamamoto, K., Ishiuchi, S. I., Sakai, M. and Fujii, M. Two-color far-field super-resolution microscope using a doughnut beam. Chemical Physics Letters 371: 634-639 (2003).
- Wells, W. A. Man the nanoscopes. Journal of Cell Biology 164: 337-340 (2004).
- Westphal, V., Blanca, C. M., Dyba, M., Kastrup, L. and Hell, S. W. Laser-diode-stimulated emission depletion microscopy. Applied Physics Letters 82: 3125-3127 (2003).
- Westphal, V. and Hell, S. W. Nanoscale resolution in the focal plane of an optical microscope. Physical Review Letters 94: 143903-1-143903-4 (2005).
- Westphal, V., Kastrup, L. and Hell, S. W. Lateral resolution of 28 nm (wavelength/25) in far-field fluorescence microscopy. Applied Physics B Lasers and Optics 77: 377-380 (2003).
- Westphal, V., Rizzoli, S. O., Lauterbach, M. A., Kamin, D., Jahn, R. and Hell, S.W. Video-rate far-field optical nanoscopy dissects synaptic vesicle movement Science 320: 246-249 (2008).
- Wildanger, D., Buckers, J., Westphal, V., Hell, S. W. and Kastrup, L. A STED microscope aligned by design. Optics Express 17: 16100-16110 (2009).
- Wildanger, D., Medda, R., Kastrup, L. and Hell, S. W. A compact STED microscope providing 3D nanoscale resolution. Journal of Microscopy 236: 35-43 (2009).
- Wildanger, D., Rittweger, E., Kastrup, L. and Hell, S. W. STED microscopy with a supercontinuum laser source. Optics Express 16: 9614-9621 (2008).
- Willig, K. I., Kellner, R. R., Medda, R., Hein, B., Jakobs, S. and Hell, S. W. Nanoscale resolution in GFP-based microscopy. Nature Methods 3: 721-723 (2006).
- Willig, K. I., Harke, B., Medda, R. and Hell, S. W. STED microscopy with continuous wave beams. Nature Methods 4: 915-918 (2007).
- Willig, K. I., Rizzoli, S. O., Westphal, V., Jahn, R. and Hell, S. W. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440: 935-939 (2006).
- Willis, R. C. Portraits of life, one molecule at a time. Analytical Chemistry 79: 1785-1788 (2007).
- Wilson, T., Juskaitis, R., Neill, M. A. A. and Kozubek, M. Confocal microscopy by aperture correlation. Optics Letters 21: 1879-1881 (1996).
- Wilson, T., Neil, M. A. A. and Juskaitis, R. Optically sectioned images in widefield fluorescence microscopy. Proceedings of SPIE 3261: 4-6 (1998).
- Wilson, T., Neil, M. A. A. and Juskaitis, R. Real-time three-dimensional imaging of macroscopic structures. Journal of Microscopy 191: 116-118 (1998).
- Wolter, S., Schuttpelz, M., Tscherepanow, M., van de Linde, S., Heilemann, M. and Sauer, M. Real-time computation of subdiffraction-resolution fluorescence images. Journal of Microscopy 237: 12-22 (2009).
- Won, R. Eyes on super-resolution. Nature Photonics 3: 368-369 (2009).
- Yang, A. H. J., Moore, S. D., Schmidt, B. S., Klug, M., Lipson, M. and Erickson, D. Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides.Nature 457: 71-75 (2009).
- Yildiz, A., Forkey, J. N., Mckinney, S. A., Ha, T., Goldman, Y. E. and Selvin, P. R. Myosin V walks hand-over-hand: single fluorophores imaging with 1.5-nm localization. Science 300:2061-2065 (2003).
- Yildiz, A. and Selvin, P. R. Fluorescence imaging with one nanometer accuracy: Application to molecular motors. Accounts of Chemical Research 38: 574-582 (2005).