RESOLFT Concept Literature References
The RESOLFT concept was introduced by Stefan Hell to describe breaking the diffraction barrier in far-field microscopy through the use of switchable or reversibly saturable fluorophore transitions. Professor Hell first described RESOLFT (REversible Saturable or switchable OpticaL Fluorescence Transitions) in terms of stimulated emission depletion (STED) and ground state depletion (GSD) microscopy, where the diffraction barrier is broken by a saturated optical transition (depletion) between two states of a fluorescent probe. Although the concept of RESOLFT was originally developed using techniques that rely on point-spread function engineering, it has also been utilized to describe superresolution methodologies that rely on localization of single molecules.
Recommended Literature
- Bossi, M., Folling, J., Dyba, M., Westphal, V. and Hell, S. W. Breaking the diffraction resolution barrier in far-field microscopy by molecular optical bistability. New Journal of Physics 8: 275-280 (2006).
- Enderlein, J. Breaking the diffraction limit with dynamic saturation optical microscopy.Applied Physics Letters 87: 094105-3 (2005).
- Heintzmann, R., Jovin, T. M. and Cremer, C. Saturated patterned excitation microscopy-a concept for optical resolution improvement. Journal of the Optical Society of America A19: 1599-1609 (2002).
- Hell, S. W. Strategy for far-field optical imaging and writing without diffraction limit.Physics Letters A 326: 140-145 (2004).
- Hell, S. W. Fluorescence nanoscopy: Breaking the diffraction barrier by the RESOLFT concept. NanoBiotechnology 1: 296-297 (2005).
- Hell, S. W., Dyba, M. and Jakobs, S. Concepts for nanoscale resolution in fluorescence microscopy. Current Opinion in Neurobiology 14: 599-609 (2004).
- Hofman, M., Eggeling, C., Jakobs, S. and Hell, S. W. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proceedings of the National Academy of Sciences (USA) 102: 17565-17569 (2005).
- Geisler, C., Schonle, A., von Middendorff, C., Bock, H., Eggeling, C., Egner, A. and Hell, S. W.Resolution of wavelength/10 in fluorescence microscopy using fast single molecule photo-switching. Applied Physics A: Materials Science & Processing 88: 223-226 (2007).
- Keller, J., Schonle, A. and Hell, S. W. Efficient fluorescence inhibition patterns for RESOLFT microscopy. Optics Express 15: 3361-3371 (2007).
- Schwentker, M. A., Bock, H., Hofmann, M., Jakobs, S., Bewersdorf, J., Eggeling, C. and Hell, S. W. Wide-field subdiffraction RESOLFT microscopy using fluorescent protein photoswitching. Microscopy Research and Technique 70: 269-280 (2007).
Additional Literature Sources
- Donnert, G., Eggeling, C. and Hell, S. W. Major signal increase in fluorescence microscopy through dark-state relaxation. Nature Methods 4: 81-86 (2007).
- Eggeling, C., Hilbert, M., Bock, H., Ringemann, C., Hofmann, M., Stiel, A. C., Andresen, M., Jakobs, S., Egner, A., Schonle, A. and Hell, S. W. Reversible photoswitching enables single-molecule fluorescence fluctuation spectroscopy at high molecular concentration.Microscopy Research and Technique 70: 1003-1009 (2007).
- Egner, A., Geisler, C., von Middendorff, C., Bock, H., Wenzel, D., Medda, R., Andresen, M., Stiel, A. C., Jakobs, S., Eggeling, C., Schonle, A. and Hell, S. W. Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters. Biophysical Journal 93:3285-3290 (2007).
- Hell, S. W. Toward fluorescence nanoscopy. Nature Biotechnology 21: 1347-1355 (2003).
- Hell, S. W., Jakobs, S. and Kastrup, L. Imaging and writing at the nanoscale with focused visible light through saturable optical transitions. Applied Physics A: Materials Science & Processing 77: 859-860 (2003).
- Sauer, M. Reversible molecular photoswitches: A key technology for nanoscience and fluorescence imaging. Proceedings of the National Academy of Sciences (USA) 102: 9433-9434 (2005).
- Saxon, E. and Bertozzi, C. R. Cell surface engineering by a modified Staudinger reaction.Science 287: 2007-2010 (2000).
- von Middendorff, C., Egner, A., Geisler, C., Hell, S. W. and Schonle, A. Isotropic 3D Nanoscopy based on single emitter switching. Optics Express 16: 20774-20788 (2008).