Fundamentals of Stereomicroscopy

Considering the wide range of accessories currently available for stereomicroscope systems, this class of microscopes is extremely useful in a multitude of applications. Stands and illuminating bases for a variety of contrast enhancement techniques are available from all of the manufacturers, and can be adapted to virtually any working situation. There are a wide choice of objectives and eyepieces, enhanced with attachment lenses and coaxial illuminators that are fitted to the microscope as an intermediate tube. Working distances can range from 3-5 centimeters to as much as 20 centimeters in some models, allowing for a considerable amount of working room between the objective and specimen.
Review Articles
  • Oblique Illumination
    Illumination directed from a single azimuth that strikes the specimen at an oblique angle.
  • Darkfield Illumination
    Darkfield observation in stereomicroscopy requires a stand containing a reflection mirror.
  • Fluorescence Illumination
    Stereomicroscopy using an arc discharge lamp for reflected specimen illumination.
Interactive Tutorials
Digital Image Galleries
  • Stereomicroscopy Fluorescence Image Gallery
    The application of stereomicroscopes for GFP observation is now so prevalent that stereo fluorescence illuminators are more frequently referred to as GFP illuminators, even though they can be utilized for many other applications in both the life sciences and industry. Large specimens, such as larvae, nematodes, zebrafish, oocytes, and mature insects can be easily selected and manipulated when they are labeled with GFP and illuminated by fluorescence techiques. This technique is also applicable to traditional fluorescence specimens, such as stained thin sections, cell culture mounts, and autofluorescence in plant tissues. Visit the gallery to observe the wide variety of specimens imaged using this novel new technique.
Selected Literature References
  • Stereomicroscopy
    Long working distance, low magnification microscopes for stereoscopic observation.

Contributing Authors

Paul E. Nothnagle - Avimo Precision Instruments, 78 Schuyler Baldwin Drive, Fairport, New York, 14450.

William Chambers - Microscopy Consultant, Nikon Instruments Inc., Melville, New York 11747.

Michael W. Davidson - National High Magnetic Field Laboratory, 1800 East Paul Dirac Dr., The Florida State University, Tallahassee, Florida, 32310.