Microscope Optical System Literature References
Modern compound microscopes are designed to provide a magnified two-dimensional image that can be focused axially in successive focal planes, thus enabling a thorough examination of specimen fine structural detail in both two and three dimensions. The optical components are mounted on a stable, ergonomically designed base that allows rapid exchange, precision centering, and careful alignment between those assemblies that are optically interdependent. Together, the optical and mechanical components of the microscope, including the mounted specimen on a glass micro slide and coverslip, form an optical train with a central axis that traverses the microscope base and stand.
Recommended Literature
- Drent, P. Properties and selection of objective lenses for light microscopy applications.Microscopy and Analysis 19: 5-7 (2005).
- Ross, S. T. Ultrahigh-NA oil immersion optics with spherical aberration correction capability. American Laboratory 35: 14-17 (2003).
- Sluder, G. and Nordberg, J. Microscope Basics. Methods in Cell Biology 81: 1-10 (2007).
- Matsumoto, B. Spherical Aberration. Media Cybernetics White Paper 4 pages (2003).
- Piston, D. W. Choosing objective lenses: The importance of numerical aperture and magnification in digital optical microscopy. Biological Bulletin 195: 1-4 (1998).
- Abramowitz, M., Spring, K. R., Keller, H. E. and Davidson, M. W. Basic principles of microscope objectives. BioTechniques 33: 772-781 (2002).
- Davidson, M. W. and Fellers, T. J. Understanding conjugate planes and Köhler illumination.Nikon MicroscopyU Whitepaper 4 pages (2003).
- Keller, H. E. Proper alignment of the microscope. Methods in Cell Biology 56: 135-146 (1998).
- Evennett, P. J. and Hammond, C. Microscopy overview. Encyclopedia of Analytical Science32-41 (2005).
Additional Literature Sources
- Arimoto, R. and Murray, J. M. A common aberration with water-immersion objective lenses.Journal of Microscopy 216: 49-51 (2004).
- Beck, J. L. A new reflecting microscope objective with two concentric spherical mirrors.Applied Optics 8: 1503-1504 (1969).
- Bennett, A. H. The development of the microscope objective. Journal of the Optical Society of America 33: 123-123 (1943).
- Burghardt, T. and Ajtai, K. Mapping microscope object polarized emission to the back focal plane pattern. Journal of Biomedical Optics 14: 034036 (2009).
- Caldwell, J. Low magnification parfocal microscope objective. Optics and Photonics News9: 62-63 (1998).
- Carman, P. D. A precise apertometer. Applied Optics 6: 1679-1681 (1967).
- Eisner, M., Lindlein, N. and Schwider, J. Confocal microscopy with a refractive microlens-pinhole array. Optics Letters 23: 748-749 (1998).
- Foster, L. V. Diffraction grating images and interference figure images as formed by a microscope objective. Journal of the Optical Society of America 13: 291-291 (1926).
- Grey, D. A new series of microscope objectives. II. Preliminary investigation of catadioptric Schwarzschild systems. Journal of the Optical Society of America 39: 723-728 (1949).
- Grey, D. Computed aberrations of spherical Schwarzschild reflecting microscope objectives. Journal of the Optical Society of America 41: 183-192 (1951).
- Haeberle, O. Focusing of light through a stratified medium: A practical approach for computing microscope point spread functions. Part I: Conventional microscopy. Optics Communications 216: 55-63 (2003).
- Hinsch, J. Mating cameras to microscopes. Methods in Cell Biology 56: 147-152 (1998).
- Kam, Z., Agard, D. and Sedat, J. Three-dimensional microscopy in thick biological samples: A fresh approach for adjusting focus and correcting spherical aberation. Bioimaging 5:40-49 (2001).
- Kester, R., Christenson, T., Kortum, R. and Tkaczyk, T. Low cost, high performance, self-aligning miniature optical systems. Applied Optics 48: 3375-3384 (2009).
- Kingslake, R. The measurement of the aberrations of the microscope objective. Journal of the Optical Society of America 26: 251-253 (1936).
- Krishna, K. and Sharma, A. Low-power gradient-index microscope objective: Design.Applied Optics 35: 5636-5641 (1996).
- Kuttner, P. An instrument for determining the transfer function of optical systems. Applied Optics 7: 1029-1033 (1968).
- Long, C., Brushenko, A. and Pontarelli, D. A. The fiber-optics hypodermic microscope.Applied Optics 3: 1031-1032 (1964).
- Martini, N. Bewersdorf, J. and Hell, W. A new high-aperture glycerol immersion objective lens and its application to 3D-fluorescence microscopy. Journal of Microscopy 206: 146-151 (2002).
- Mico, V., Zalevsky, Z. and Garcia, J. Synthetic aperture microscopy using off-axis illumination and polarization coding. Optics Communications 276: 209-217 (2007).
- Montfort, F., Charriere, F., Colomb, T., Cuche, E., Marquet, P. and Depeursinge, C. Purely numerical compensation for microscope objective phase curvature in digital holographic microscopy: Influence of digital phase mask position. Journal of the Optical Society of America 23: 2944-2953 (2006).
- Nayyar, V. P. and Verma, N. K. Resolution of a microscope: Improvement using a centrally obstructed condenser aperture and a semitransparent II-phase annular aperture objective system. Applied Optics 15: 1341-1344 (1976).
- Quesnel, L. Microscopy and Micrometry. Methods in Microbiology 5: 1-103 (1971).
- Simon, J. M. and Comastri, S. A. The compound microscope: Optical tube length or parfocalization? European Journal of Physics 26: 1101-1105 (2005).
- Tadao. T. A new type of shearing interferometer for ht measurement of the transfer functions of the microscope objective. Applied Optics 2: 371-378 (1963).
- Tsuruta, T. A new type of shearing interferometer for the measurement of transfer functions of the microscope objective. Applied Optics 2: 371-378 (1963).
- Vaidya, W. M. and Gupta, K. Measurement of the axial and off-axis geometrical aberrations of microscope objectives. Journal of the Optical Society of America 50: 467-471 (1960).
- Voort, G. F. Optical microscopy. Encyclopedia of Condensed Matter Physics 175-182 (2005).
- Wooters, G. Lens centering in microscope objectives. Journal of the Optical Society of America 40: 521-523 (1950).
Books and Book Chapters
- Davidson, M. W. and Abramowitz, M. Optical microscopy. in Encyclopedia of Imaging Science and Technology 2: 1106-1140 (2002).
- Murphy, D. Lenses and geometrical optics. in Fundamentals of Light Microscopy and Digital Imaging, Wiley-Liss, New York, pages 43-60 (2001).
- Rost, F. and Oldfield R. The optical magnifying system. in Photography with a Microscope, Cambridge University Press, Cambridge, United Kingdom, pages 66-86 (2000).
- Lanni, F. and Keller, E. Microscopy and microscope optical systems. in Imaging Neurons: A Laboratory Manual, Yuste, R., Lanni, F., and Konnerth, A. (eds), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pages 1.1-1.72 (2000).
- Inoue, S. and Oldenbourg, R. Microscopes. in Handbook of Optics: Devices, Measurements, and Properties, Volume 2 McGraw-Hill, New York, New York, 17.1-17.50 (1995).
- Inoue, S. and Spring, K. R. Video Microscopy: The Fundamentals, Plenum Press, New York, New York, pages 49-58 (1997).
- Davidson, M. W., Olenych, S. and Claxton, N. Photomicrography. in Focal Encyclopedia of Photography, 4th Edition, Focal Press, Burlington, Massachusetts, pages 592-602 (2007).