News

IN

Are you on Twitter?

Follow Nikon Instruments for microscopy news and trends, updates on new products, and information on contests and promotions.

Labeling Cellular Structures in vivo Using Confined Primed Conversion of Photoconvertible Fluorescent Proteins

Researchers at ETH Zürich have published a new method in Nature Protocols for axially confined photoconversion of the fluorescent protein Dendra2 in single cells – demonstrating the concept in developing zebrafish embryos. This method uses a specialized filter plate and the process of ‘primed conversion’ to convert Dendra2 to a red emitting form using 488 nm and 730 nm beams that intersect only at a common focal point.

Learn More @ Nature Protocols

Super-Resolution Dipole Orientation Mapping via Polarization Demodulation

A new open-access research article in the journal Light: Science & Applications details a new Fluorescence Polarization Microscope (FPM) design for super-resolution imaging of the dipole orientations of overlapping single fluorophores in sub-diffraction limited volumes. Using this new technique, they’ve demonstrated that the dipole of actin monomers is perpendicular to the actin filament, and radially distributed in septin complexes in live yeast cells. Imaging was performed on a Nikon Ti-E motorized inverted research microscope.

Learn More @ Light: Science & Applications

Bright Photoactivatable Fluorophores for Single-Molecule Imaging

Researchers at the Janelia Research Campus have developed new photoactivatable dyes for improved live cell single-particle tracking and localization microscopy experiments. The new photoactivatable dyes are derived from existing Janelia Fluor (JF) dyes - known for their increased brightness, photostability, small size, and cell permeability. To learn more, check out the article in Nature Methods.

Learn More @ Nature Methods

Microscopic Fish Face Takes First Place in 2016 Nikon Small World Competition

Nikon Instruments Inc. today announced the winners of the 42nd annual Nikon Small World Photomicrography Competition, awarding first place to Oscar Ruiz, Ph.D. for his microscopic view of the facial development of a four-day-old zebrafish embryo. Fittingly, Nikon unveiled Dr. Ruiz’s zebrafish “selfie” win first on Instagram this morning, giving followers the first look at the winning images. The full winner gallery can now also be viewed on www.nikonsmallworld.com.

Learn More @ Nikon Small World

Microenvironment Complexity and Matrix Stiffness Regulate Breast Cancer Cell Activity in a 3D in vitro Model

A new open access article in Scientific Reports details the role of extracellular matrix (ECM) stiffness in regulating breast cancer cell activity by testing cell growth on a variety of 2D and 3D substrates. Researchers found that the highest proliferation rates occurred in the softest 3D hydrogels tested – providing more evidence for the need of 3D culture systems recapitulating the native microenvironment in order to reveal disease-relevant phenotypes. Gels were imaged using a Nikon Eclipse Ni-U upright research microscope.

Learn More @ Nature Scientific Reports

Quantum-dot Solar Windows Evolve with 'Doctor-blade' Spreading

Many people in the microscopy world are familiar with quantum dots – semiconductor nanocrystals with well-defined light emitting properties – as fluorescent labels. Researchers at Los Alamos National Laboratory have demonstrated how quantum dot-based solar panels can be scaled up for practical use, large enough to be used as a building window when used in luminescent solar concentrators (LSC). Quantum dots in LSCs absorb photons and emit light at a lower energy, guided by total internal reflection to the edges of the device, where they are collected by photovoltaic cells.

Learn More @ PHYS.ORG

Scientists Bioprint Tubular 3-D Renal Architecture that Recapitulates Functions of the Kidney

A team of researchers at the Wyss Institute for Biologically Inspired Engineering at Harvard realized a major milestone in 3D bioprinting with the construction of a working proximal tubule – a key component of kidney nephrons – made of human epithelial cells. They hope to use these engineered tubules as models of human kidney function, providing a highly relevant system for pre-clinical drug response testing. 

Learn More @ Medical Xpress

iPSC-derived Cardiomyocytes Reveal Abnormal TGF-β Signalling in Left Ventricular Non-compaction Cardiomyopathy

New research in Nature Cell Biology details the application of patient-derived induced pluripotent stem cells differentiated into cardiomyocytes (iPSC-CMs) to serve as a model system for studying left ventricular non-compaction (LVNC) – a common cardiomyopathy in children. Using iPSC-CMs helped researchers better understand the mechanisms underlying LVNC, who demonstrated treatment for reversing the disease phenotype. Imaging was performed in part using a Nikon Eclipse 80i upright research microscope.

Learn More @ Nature Cell Biology

A New Design for a Green Calcium Indicator with a Smaller Size and a Reduced Number of Calcium-binding Sites

A team of Russian researchers has introduced a new fluorescent calcium indicator for live cell imaging. The new indicator, NTnC, utilizes a modified version of the ultra-bright fluorescent protein mNeonGreen, with troponin C as the calcium-binding moiety. The performance of NTnC was validated against that of the widely used GCaMP6s calcium sensor in neurons, imaged using a Nikon Ti inverted research microscope. Check out the open access article in Scientific Reports to learn more.

Learn More @ Nature Scientific Reports

Anti-tubulin Drugs Conjugated to Anti-ErbB Antibodies Selectively Radiosensitize

A major problem in cancer treatment is the resistance of tumours to radiation therapy. Researchers at UC San Diego have developed a new drug for selectively sensitizing tumor cells to ionizing radiation, maximizing the effectiveness of radiation therapy while minimizing damage to healthy tissues. Imaging for this study was performed using a Nikon A1R confocal microscope. Check out the open access research article in Nature Communications to learn more.

Learn More @ Nature Communications

Glare-reducing Approaches Could Lead to a Type of Noise-canceling Camera for Microscopy, Astronomy Imaging

Researchers from the Weizmann Institute of Science have published a new method in the journal Optica for glare reduction. Glare happens when non-specific light obscures the object one is trying to look at. This new method uses a spatial light modulator to optimize a pattern for glare removal – drastically reducing background signal. In biological microscopy, this method is promising for imaging through thick and scattering structures, such as tissue. Check out the Phys.org article to learn more.

Learn More @ PHYS.ORG

Cell Painting, a High-Content Image-based Assay for Morphological Profiling Using Multiplexed Fluorescent Dyes

Researchers from the Broad Institute of MIT and Harvard have published a new protocol in Nature Protocols detailing Cell Painting – a high content screening assay for evaluating about 1500 morphological features of single cells, including shape, texture, size, etc. Simple 6-color staining allows researchers to include organelle morphology in analysis, including the nucleus, mitochondria, and actin cytoskeleton. This protocol provides a powerful method for evaluating the effects of different chemicals on cells, including potential treatments for cancer. The CellProfiler analysis software is open source, so check it out!

Learn More @ Nature Protocols

Yoshinori Ohsumi Wins Nobel Prize In Physiology Or Medicine

Congratulations to Japanese biologist Yoshinori Ohsumi of the Tokyo Institute of Technology for winning the 2016 Nobel Prize in Physiology or Medicine. Professor Ohsumi was awarded the Prize for his research in autophagy – a process whereby intracellular components are delivered to the lysosome for degradation and subsequent recycling. To learn more, check out the NPR article.

Learn More @ NPR

First Evidence of Deep-Sea Animals Ingesting Microplastics

Recently published research in the journal Scientific Reports presents the first evidence of deep-sea organisms ingesting microplastics. Squat lobsters, sea cucumbers, and hermit crabs from the mid-Atlantic and southwest Indian Oceans were found to contain microbeads – small plastics commonly used in commercial cleaners and cosmetics. Different types of plastics were identified using a Nikon polarizing light microscope. Check out the Phys.org article to learn more.

Learn More @ PHYS.ORG

Nikon Single Molecule Imaging Contest Winners

We are proud to announce the winner of the Nikon Single Molecule Imaging Contest held during the 6th annual Single Molecule Localization Microscopy Symposium (SMLMS) at Ecole polytechnique fédérale de Lausanne (EPFL). Check out the first prize winning image here – a two color STORM image of fixed COS-7 cells stained for microtubules (green, Alexa 647 – alpha-tubulin) and mitochondria (red, Alexa 750 – TOMM-20). The winners will receive a Nikon D5500 digital SLR camera – congratulations!

Learn More @ Nikon Instruments

Self Driving Fish!

Here's a fun application for machine vision technologies - self-driving fish! The onboard camera analyzes the direction the fish is swimming and moves the vehicle accordingly. If only it could remember where it wanted to go...

Learn More @ IN THE NOW

Parametric Analysis of Colony Morphology of Non-labelled Live Human Pluripotent Stem Cells for Cell Quality Control

Researchers working as part of the Stem Cell Evaluation Technology Research Center have introduced a non-invasive and image-based method for evaluating the quality of live human pluripotent stem cell (hPSC) colonies over time. This method relies upon multiparametric analyses of cell morphology as detected using phase contrast optics, and was in agreement with gene expression profile data. Imaging was performed using a robotic Nikon BioStation CT incubation/microscope system. The Scientific Reports article is open access, so check it out!

Learn More @ Nature Scientific Reports

Share this page:

News