Are you on Twitter?

Follow Nikon Instruments for microscopy news and trends, updates on new products, and information on contests and promotions.

Computer Scientists Solve Mystery Of The Ein Gedi Scroll By 'Virtual Unwrapping'

Here’s an interesting article by NPR about how computer scientists at the University of Kentucky were able to read a scroll that was radiocarbon-dated to the 3rd-4th century CE. The catch? The age and damage to the scroll prevented it from being opened, so instead the researchers used non-invasive x-ray micro-computed tomography (microCT) to create a 3D image of the scroll from which they could reconstruct the text. Co-author Seth Parker hopes the method will be applied to other ancient texts, including those recovered from Pompeii and Herculaneum.

Learn More @ NPR

Nikon Introduces New DS-Fi3 Microscopy Camera and DS-L4 Tablet Interface

We are excited to announce our newest imaging solution – the DS-Fi3 color camera and accompanying DS-L4 tablet controller. Excitingly, the DS-Fi3 communicates directly with the DS-L4 tablet, eliminating the need for a computer workstation. Images can be acquired using the tablet and shared directly over a Wi-Fi network or shared network drive. We hope this new duo will provide a versatile and user-friendly solution for imaging in today’s fast-paced mobile environment.

Learn More @ Nikon Instruments

Implantable Amyloid Hydrogels for Promoting Stem Cell Differentiation to Neurons

Researchers have developed a new type of hydrogel for growing stem cells and differentiating them into neurons. These amyloid hydrogels are based on the alpha-synuclein protein, and provide an excellent vehicle for cell replacement therapies, useful for treating neurodegenerative diseases such as Parkinson’s. Cell and gel imaging was performed using a Nikon Eclipse Ti-U inverted research microscope. To learn more, check out the open access article.

Learn More @ NPG Asia Materials

Single Molecule Localization Microscopy Symposium

The 6th annual Single Molecule Localization Microscopy Symposium (SMLMS) at Ecole polytechnique fédérale de Lausanne (EPFL) has concluded. We are proud to sponsor such an amazing symposium focused on bringing researchers in the field of single molecule super-resolution imaging together.

Part of the SMLMS is the software challenge – where researchers compare algorithms and software packages for analyzing STORM-type single molecule datasets acquired under a variety of different conditions. Check out the video on the SMLMS YouTube Channel to see the results!

Learn More @ SMLMS epfl YouTube Channel

Quantum Mechanics Technique Allows for Pushing Past 'Rayleigh's Curse'

One of the greatest problems in microscopy is resolving two closely spaced objects as separate, with the minimum distance previously thought to be fundamentally-limited by the diffraction of light. However, new research from the National University of Singapore utilizes modern advances in quantum-information theory to extract even more information from detected light. This new optical method – spatial-mode demultiplexing (SPADE) – also utilizes a specialized multichannel detector for separating the detected light by mode, capable of super-resolution.

Learn More @ PHYS.ORG

Molecular Organization of the Desmosome as Revealed by Direct Stochastic Optical Reconstruction Microscopy

Researchers at Emory University University have characterized the organization of the desmosome using direct stochastic optical reconstruction microscopy (dSTORM). Desomosomes are macromolecular junctions providing cell-cell adhesion. Using multicolor dSTORM, the organization of desmoglein 3, plakoglobin, and desmoplakin was quantified in keratinocytes. dSTORM successfully resolved the separation between the inner and outer dense plaque proteins. Imaging was performed using a Nikon N-STORM microscope, with correlative imaging performed using the Nikon N-SIM E structured illumination system on the same stand.

Learn More @ Journal of Cell Science

Nobel Laureate Dr. Roger Tsien, Co-Developer of GFP Technology, Dies at 64

Dr. Tsien was a Professor in the Departments of Pharmacology and Chemistry and Biochemistry at the University of California, San Diego. He is perhaps best known for discovering and developing green fluorescent protein (GFP) as a genetically expressed biochemical marker for use in living systems, which lead to a revolution in biological imaging.

Continue reading

Subatomic Microscopy Key to Building New Classes of Materials

We’re constantly amazed at the continuing advances in microscopy. Research at Penn State and Lawrence Berkeley National Lab is pushing the resolving ability of electron microscopy to the tens of picometers – more than enough to see a single hydrogen atom. Such high power microscopes are a crucial tool for designing and building new materials, including specialized semiconductors, superconductors, and more. Check out the article to learn more.

Learn More @ PHYS.ORG

Team Makes Zika Drug Breakthrough

Here’s a great article about a collaborative research team from Florida State University, Johns Hopkins University, and National Institutes of Health (NIH) that has identified two different groups of drugs for the treatment of Zika. One group of drugs prevents the virus from replicating in humans and the other protects developing brain cells in newborns. The researchers hope that by using existing drugs they’ll be able to address this global health emergency without waiting years for new drugs to emerge from the development pipeline.

Learn More @ Medical Xpress

An Endosomal Tether Undergoes an Entropic Collapse to Bring Vesicles Together

The targeting of vesicles to the right target membrane is an early and important step in intracellular transport. New research has found that EEA1, a tethering protein that localizes to early endosomes, undergoes a conformational change from an extended form to a collapsed form upon interaction with Rab5:GTP. The change to the collapsed form provides force to pull the vesicle to the target membrane for docking and fusion. Confocal imaging was performed using a Nikon Ti-E inverted microscope with a Yokogawa CSU-X1 spinning disk, and super-resolution imaging with a Nikon N-STORM microscope.

Learn More @ Nature

New Method Creates Endless Supply of Kidney Precursor Cells

Scientists at the Salk Institute have achieved a major breakthrough in regenerative medicine – creating stable cultures of human kidney precursor cells for the first time. The cultured nephron progenitor cells (NPCs) can be used to grow replacement kidney tissue, both for research and therapeutic purposes. This approach could one day be used to grow entire human kidneys in the lab. Previous approaches used induced pluripotent stem cells, requiring time-consuming processes to make the same type of cells and with shorter shelf life.

Learn More @ Medical Xpress

Spider Silk: Mother Nature’s Bio-Superlens

Most of us are accustomed to glass lenses on our microscopes. But new research from Bangor University and University of Oxford shows that spider silk can be used as a superlens – a lens with resolving power exceeding what is possible with conventional optics. The new spiderlens provides a 2x improvement in resolution over what is normally possible. Excitingly, spider silk is also an incredibly cheap, abundant, and robust material.

Learn More @ Bangor University

Seeing Through to a Mouse’s Nervous System

Scientists have come up with a new method for rendering mice and other organisms transparent. Called uDISCO, this optical clearing method allows researchers to selectively highlight the inner workings of usually opaque organisms, lighting up the entire nervous system of a mouse for high-resolution single-cell fluorescence imaging. The authors believe the technique will one day be expanded from mice and rats to the mapping the entire human brain.

Learn More @ The New York Times

Bright Monomeric Near-infrared Fluorescent Proteins as Tags and Biosensors for Multiscale Imaging.

A new open-access paper in Nature Communications takes a closer look at near-infrared fluorescent proteins (IFPs) as optical markers and biosensors for multi-color and thick-specimen imaging. Near-infrared light is not as strongly scattered or absorbed by biological structures as visible wavelengths, making it ideal for deep tissue and in vivo imaging of larger organisms. The authors report 3 new IFPs, validating their utility for imaging, including multi-color Structured Illumination Microscopy with Nikon’s N-SIM system.

Learn More @ Nature Communications

Jellyfish Proteins Used to Create Polariton Laser

In other news this week, scientists are using jellyfish proteins to create tiny lasers. For decades jellyfish-derived GFP (green fluorescent protein) has served as a go-to tool for lighting up different parts of the cell. It turns out that the structure of GFP also makes it a great gain medium for polariton lasers - a special type of low energy laser. Also, unlike existing polariton lasers, the new GFP laser doesn't need to be heavily cooled, operating at room temperature.

Learn More @ PHYS.ORG

A Nanoscale Interface Promoting Molecular and Functional Differentiation of Neural Cells

Here’s a new open-access paper in Scientific Reports detailing the use of Hydrotalcite-like compounds (HTlc) as nanostructured interfaces that are biocompatible with astrocytes in vitro. The use of nanostructured interfaces allows researchers to exert control of cellular behavior at several different scales. HTlc films favor astrocyte differentiation by inducing vinculin polarization and F-actin fiber alignment. This was assessed in part by imaging immunofluorescence with Nikon ECLIPSE 80i and TE-2000U research microscopes.

Learn More @ Nature Scientific Reports

Share this page: